Supporting Information

Photosynthesis of hydrogen peroxide from dioxygen and water using aluminium-based metal-organic framework assembled with porphyrin- and pyrene-based linkers

Yoshifumi Kondo,^a Kenta Hino,^a Yasutaka Kuwahara,^{a,b,c} Kohsuke Mori,^{a,b} and Hiromi Yamashita^{*,a,b}

^a Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.

^b Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.

^c JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.

Table of contents

	Pages
Experimental	S3 – S4
Figure S1 – S2	S5 - S6
Table S1 – S3	S7 – S8
References	S9

Experimental Section

Characterization

Powder X-ray diffraction (XRD) patterns were recorded using a Rigaku Ultima IV diffractometer with Cu K α irradiation ($\lambda = 1.54056$ A, 40 kV to 40 mA). Nitrogen sorption isotherms were acquired at -196 °C using a BELSORP-max system (MicrotracBEL Corp.). Samples were preheated at 150 °C for 16 h before the measurement. Specific surface areas were calculated by the Brunauer-Emmett-Teller (BET) method using nitrogen adsorption data based on ISO 9277 standard. Pore distribution was calculated by the Non-Local Density Functional Theory (NLDFT) method. Proton nuclear magnetic resonance (¹H-NMR) spectra were obtained on a JEOL JNM-ECS 400 spectrometer operating at 400 MHz. UV-Vis spectra were collected on a Shimadzu UV-2600 spectrometer equipped with an integrating sphere. BaSO₄ was used as a reference, and absorption spectra were obtained using the Kubelka-Munk function. Steady-state photoluminescence (PL) spectra were obtained using a Horiba Fluorolog-3 spectrofluorometer at room temperature. The excitation wavelength of PL measurements was 420 nm. Time-resolved PL measurements and time-resolved emission spectroscopy (TRES) measurements were performed using a Horiba DeltaFlex.

Determination of the molar ratio between TCPP and TBAPy linkers

A MOF sample (1.0 mg) was dissolved in dimethylsulfoxide-d6 (DMSO-d₆) containing 10 vol% deuterium sulfate (D_2SO_4). The supernatant liquid was transferred to a NMR tube.

Photocatalytic H₂O₂ production

MOF samples (5.0 mg) and distilled water (5.0 mL) were added into a Pyrex reaction vessel (30 mL). The mixture was bubbled with O₂ for 15 min under dark condition after sonication. Thereafter, the reaction solution was irradiated from the side with a Xe lamp (100 mW/cm², 500 W, SAN-EIELECTRIC XEF-501S) through a glass filter ($\lambda > 420$ nm) for 3 h with magnetic stirring at ambient pressure and temperature.

H₂O₂ decomposition test

Al-TCPP10, Al-TCPP4-TBAPy6, and Al-TBAPy10 (5.0 mg) and 0.5 mmol·L⁻¹ H₂O₂ aqueous solution (5.0 mL) were added to a Pyrex reaction vessel (30 mL), which was sealed with a rubber septum. The mixture solution was stirred under dark conditions at ambient pressure and temperature.

Quantification of produced H₂O₂

The amount of H₂O₂ produced was determined by spectroscopic titration with an acidic solution of $[TiO(tpypH_4)]^{4+}$ complex (Ti-TPyP reagent). The $[TiO(tpypH_4)]^{4+}$ complex (3.4 mg) was dissolved in 50 mmol·L⁻¹ HCl aqueous solution (100 mL). This solution was used as the Ti-TPyP reagent. The sample solution was diluted with purified water. The diluted sample solution (0.25 mL) was mixed with 4.8 mol·L⁻¹ HClO₄ aqueous solution (0.25 mL) and Ti-TPyP reagent (0.25 mL). After a few minutes, the mixture was diluted to 2.5 mL with purified water. The absorbance of this solution at $\lambda = 434$ nm (As) was measured using a Shimadzu UV-2600 UV-Vis spectroscope. A blank solution was prepared by adding purified water in place of the sample solution (0.25 mL) and its absorbance was defined as A_B. The difference in absorbance (ΔA_{434}) was determined by the following equation: $\Delta A_{434} = A_B - A_S$. Based on ΔA_{434} and the volume of the solution, the amount of hydrogen peroxide was determined according to the literature.¹

The detection of active oxygen using ESR measurements

For trapping superoxide radicals (O₂⁻⁻), Al-TCPP4-TBAPy6 powder (1.0 mg) was suspended in a 100 mmol·L⁻¹ DMPO water/acetonitrile (1:4) solution (1.0 mL). For trapping singlet oxygen (¹O₂) species, Al-TCPP4-TBAPy6 powder (1.0 mg) was suspended in a 50 mmol· L⁻¹ TEMPO water/acetonitrile (1:4) solution (1.0 mL). All solutions were mixed, transferred into a quartz ESR cell, and bubbled O₂ for 15 min. The ESR measurements were performed by using an ESR spectrometer (JEOL RESONANCE JES-TE200) at room temperature. Test samples were irradiated by using a light focused from a xenon arc-lamp (Ushio Co., UXL10, Tokyo, Japan) through a glass filter ($\lambda > 420$ nm). ESR measurements were conducted under the following conditions: microwave power, 1.0 mW; center of magnetic field, 336.0 mT; sweep width, 7.5 mT; sweep time, 1 min; modulation width, 0.1 mT; amplitude, 400; time constant, 0.1 s. Signal intensities were normalized to a MnO marker.

Fig. S1 (a) Recycle tests using Al-TCPP4-TBAPy6 in distilled water in O₂ atmosphere under visible-light ($\lambda > 420$ nm) irradiation. (b) PXRD patterns, (c) N₂ physisorption isotherms and (d) pore distributions calculated using NLDFT method of Al-TCPP4-TBAPy6 before and after the reactions. (e) Time course of H₂O₂ production under visiblelight ($\lambda > 420$ nm) irradiation of Al-TCPP4-TBAPy6 during the long-term reaction.

Fig. S2 Comparison of H_2O_2 concentration generated over Al-TCPP4-TBAPy6 under visible-light ($\lambda > 420$ nm) irradiation for 3 h with and without methanol as a hole scavenger.

Sample	TCPP / mg	TBAPy / mg
Al-TCPP10	50	0.0
Al-TCPP8-TBAPy2	40	9.0
Al-TCPP6-TBAPy4	30	18
Al-TCPP4-TBAPy6	20	27
Al-TCPP2-TBAPy8	10	36
Al-TBAPy10	0	48

Table S1 The molar ratio of TCPP and TBAPy linkers in Al-TCPP(10-*X*)-TBAPy*X* samples added during synthesis.

Table S2 Comparison of photocatalytic activities on H_2O_2 production from O_2 and water over MOF photocatalysts.^{2–4}

Sample	$H_2O_2 \ production \ rate $$ / \mu mol \cdot L^{-1} \cdot h^{-1}$$ \label{eq:H2O2}$	Reaction condition	Ref.	
Al-TCPP4-TBAPy6	127	MOF 5.0 mg, distilled water	ter	
		127 5.0 mL, Xe lamp ($\lambda > 420$ nm,		
		$100 \text{ mW} \cdot \text{cm}^{-1}$)		
MIL-125-PDI	24	MOF 5.0 mg, distilled	2	
		water/acetonitrile (1:4) 5.0		
		mL, Xe lamp ($\lambda > 420$ nm,		
		800 mW·cm ⁻¹)		
MIL-001*	7.0	MOF 5.0 mg, distilled water		
		5.0 mL, Xe lamp ($\lambda > 420$ nm,	3	
		$100 \text{ mW} \cdot \text{cm}^{-1}$)		
Ni/Hf-0.5	10.7	MOF 5.0 mg, distilled water		
		5.0 mL, Xe lamp ($\lambda > 420$ nm,	4	
		100 mW·cm ⁻¹)		

*We could not replicate the activity in the reference paper (Ref. 9), so we conducted a photocatalytic test under the above condition.

Sample	T_1 / ns	T_2 / ns	T ₃ / ns	T 4 / ns
Al-TBAPy10	0.28 (4.55)	2.28 (35.54)	11.48 (32.04)	39.55 (27.88)
Al-TCPP4-TBAPy6	0.07 (11.51)	2.09 (88.49)	_	-

Table S3 PL lifetimes and contribution rates of Al-TBAPy10 and Al-TCPP4-TBAPy6 excited at 405 nm.

References

- 1 C. Matsubara, N. Kawamoto and K. Takamura, *Analyst*, 1992, **117**, 1781–1784.
- 2 X. Chen, Y. Kondo, S. Li, Y. Kuwahara, K. Mori, D. Zhang, C. Louis and H. Yamashita, *J. Mater. Chem. A*, 2021, **9**, 26371–26380.
- 3 Y. Zheng, H. Zhou, B. Zhou, J. Mao and Y. Zhao, *Catal. Sci. Technol.*, 2022, 12, 969–975.
- 4 Y. Kondo, K. Honda, Y. Kuwahara, K. Mori, H. Kobayashi and H. Yamashita, *ACS Catal.*, 2022, **12**, 14825–14835.