Article to Journal of Materials Chemistry A

Supporting Information

Promoting Nitrate Electroreduction to Ammonia over A-site Deficient Cobalt-based Perovskite Oxides

Fulong Liu^{1,#}, Zhenbao Zhang^{2,#}, Lei Shi³, Yu Zhang⁴, Xiaoyu Qiu⁵, Yuming Dong^{1,*}, Heqing Jiang⁴, Yongfa Zhu^{6,*}, Jiawei Zhu^{1,4,*}

¹Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China

²School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China

³College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China

⁴Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China

⁵School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China

⁶Department of Chemistry, Tsinghua University, Beijing 100084, China

[#]These authors contributed equally to this work.

*Email: dongym@jiangnan.edu.cn, zhuyf@mail.tsinghua.edu.cn, jwzhu@qibebt.ac.cn

1 Experimental details

Chemicals and Materials. Barium nitrate (Ba(NO₃)₂, 99.5%), strontium nitrate (Sr(NO₃)₂, 99.5%), ammonium hydroxide (NH₃·H₂O, 25-28%), ethanol (C₂H₆O, 99.7%), isopropanol (C3H8O, 99.7%), potassium nitrate (KNO3, 99.0%), potassium sulfate (K₂SO₄, 99.0%), solution of sodium hypochlorite (NaClO, available chlorine \geq 5.2%), ammonia chloride (NH4Cl, 99.5%), trisodium citrate dihydrate (C6H5Na3O7, 99.0%), salicylic acid (C7H6O3, 99.5%), sodium thiosulfate (Na₂S₂O₃, AR), soluble starch from potato ((C₆H₁₀O₅)_n, AR), potassium iodide (KI, 99.0%), hydrochloric acid (HCl, 36-38%), sodium hydrate (NaOH, AR), and sulphuric acid (H₂SO₄, 70%) were purchased from Sinopharm Chemical Reagent. Cobalt nitrate hexahydrate (Co(NO₃)₂·6H₂O, 99.99%), ferric nitrate nonahydrate (Fe(NO₃)₃·9H₂O, AR), and potassium nitrate-15N (K¹⁵NO₃, 99 atom%) were purchased from Shanghai Macklin Biochemical. Ethylenediaminetetraacetic acid (EDTA, 99.0%), and citric acid (CA, 99.5%) were purchased from Shanghai Greagent. Sodium nitroferricyanide dihydrate (C5FeN6Na2O·2H2O, 99.0%), and dimethyl sulfoxide (DMSO-d6, 99.9%) were purchased from Shanghai Aladdin Biochemical Technology. Maleic acid (C4H4O4, 99.0%) was purchased from Amethyst. Nation solution (5 wt%) was purchased from Alfa Aesar. Nafion 117 Proton exchange membrane was purchased from Dupont. Carbon black (ECP600JD) was purchased from Japan Lion. Deionized water (18.2 $M\Omega \cdot cm^{-1}$) at room temperature was used to prepare all the aqueous solutions. All chemical regents were used as received without further purification.

Preparation of catalysts. The A-site cation defective $(Ba_{0.5}Sr_{0.5})_{1-x}Co_{0.8}Fe_{0.2}O_{3-\delta}$ (x=0, 0.05, 0.10, 0.15, and 0.20, denoted as $(BS)_{1-x}CF$), were prepared by a typical sol-gel method. Firstly, stoichiometric mass of $Ba(NO_3)_2$, $Sr(NO_3)_2$, $Co(NO_3)_2 \cdot 6H_2O$, and $Fe(NO_3)_3 \cdot 9H_2O$ were dissolved in deionized water to obtain the precursor solution. Then a certain amount of EDTA-ammonium hydroxide mixture and CA were added sequentially to the precursor solution as complexing agents, and the molar ratio of total metal ions, EDTA, CA, and ammonium hydroxide was 1:1:2:10. To ensure the complexation was complete, an appropriate amount of ammonium hydroxide was added to the mixed solution and the pH of the solution was adjusted to 7. The precursor solution was continuously magnetic stirred and heated at 90 °C for 8 h to form a transparent precursor gel. Then the precursor gel was heated at 200 °C for 5 h to obtain the solid precursor. Finally, the solid precursors were calcined in air at 950 °C for 5 h to yield pure phase perovskite-type samples. In order to make the samples more easily dispersed, the catalyst particles were mixed with ethanol and ball milled at 675 rpm·min⁻¹ for 5 h. The ball-milled sample was removed and dried to get the catalyst powder with uniform particle size. Therefore, BSCF, (BS)0.95CF, (BS)0.90CF, (BS)0.85CF and (BS)0.80CF were successfully synthesized, respectively.

Preparation of electrode. Typically, 100 μ L of Nafion solution (5 wt%) and 8 mg of mixed samples (catalyst: carbon = 1:1) were dispersed in 1900 μ L of isopropanol by sonication for 2 h to form a homogeneous ink. Then, 10 μ L of the above mixture was pipetted onto an L-shaped glassy carbon electrode (5 mm diameter) and dried under the atmosphere of infrared light for 30 min.

Characterization. The crystal structure of as-prepared samples were examined by room temperature X-ray diffraction (XRD, Bruker AXS, Germany D8 3 kW) and filtered Cu K α radiation ($\lambda = 1.5406$ Å). The X-ray diffraction patterns were collected by step scanning in the 2-theta range of 20-80° with the intervals of 0.02°. Rietveld refinement analysis of the XRD patterns was carried out in order to obtain more detailed structural information. The specific surface area of the samples was characterized by a nitrogen adsorption test (Best Instrument Technology (Beijing), BSD-PS2) using the Brunauer-Emmett-Teller (BET) method. Scanning electron microscopy (SEM) images were conducted to observe the morphologies of as-prepared samples using a Hitachi S4800 microscope. Transmission electron microscopy (TEM) images were recorded on a JEM 2100plus microscope operating at 200 KV. The energy-dispersed X-ray (EDX) mapping images were performed on a JEOL ARM 300F with dual EDS detectors. X-ray photoelectron spectroscopy (XPS) measurements were carried out on each sample using an Axis supra spectrometer (Kratos Analytical) with an Al Ka microfused monochromatic light source. The binding energies were calibrated to an adventitious C 1s peak at 284.8 eV. The

room-temperature oxygen vacancy concentration of as-synthesized samples was determined by iodometric titration. For a typical procedure, 0.1 g of sample powder was dissolved in HCl aqueous solution under nitrogen protection to prevent the oxidation of I⁻ ions (from KI) by air. A few drops of starch solution were added as a titration indicator. Then, the Na₂S₂O₃ solution was slowly dripped into the above mixture until the end point of titration. The oxygen vacancy concentration at room temperature was calculated based on the amount of sodium thiosulfate solution.

Electrochemical measurements. Electrochemical measurements were performed in an H-type electrolytic cell separated by Nafion 117 Proton membrane, and the electrochemical data were recorded by a CS 2350M electrochemical workstation (Wuhan Corrtest). For a typical three-electrode system, Ag/AgCl (3 M KCl) electrode and platinum plate $(1 \times 1 \text{ cm}^2)$ were used as the reference and counter electrode, respectively, and catalyst ink was applied dropwise to the glassy carbon electrode as the working electrode. A mixed electrolyte of 0.5 M KNO₃/0.1 M K₂SO₄ (50 mL) was equally distributed to the cathode and anode chambers. All potentials were recorded on the reversible hydrogen electrode ($E_{RHE} = E_{Ag/AgCl} + 0.222 + 0.0591 \text{ V} \times \text{pH}$), and then iR compensation (90%) was performed for all potentials. Prior to the nitrate electroreduction test, the electrolyte was purged with high purity Ar for 30 min. The cyclic voltammetry (CV) curves were conducted until the polarization curve reached steady state at a scan rate of 50 mV \cdot s⁻¹, and then the linear sweep voltammetry (LSV) curves were performed at a scan rate of 5 mV·s⁻¹. Next, constant potential polarization tests were performed at different potentials for 0.5 h, and the produced NH₃ was analyzed by ultraviolet-visible (UV-vis) spectrophotometer and/or ¹H nuclear magnetic resonance (NMR, 400 MHz) spectroscopy. The electrochemical active surface area (ECSA) of the catalysts was evaluated using electrochemical double-layer capacitance values (Cdl). CV curves were performed over the non-faradaic region at scan rates of 5, 10, 20, 40, 70, and 100 mV·s⁻¹, respectively, and the C_{dl} values were obtained from the linear relationship between the current density difference at a given potential and the scan rate. The electrochemical impedance spectra (EIS) were measured at -0.5 V (vs. RHE) from 0.1 Hz to 100 KHz.

Determination of ammonia. Concentration of produced NH₃ was quantified spectrophometrically by the indophenol blue method with modification.¹ Firstly, a certain amount of the reacted electrolyte was removed and diluted to 2 mL. Then, 2 mL of 1 M sodium hydroxide solution containing 5% salicylic acid and 5% sodium citrate, 1 mL of 0.05 M sodium hypochlorite and 0.2 mL of 1.0 wt% sodium nitroferricyanide solution were added. After incubation for 2 h at room temperature, the absorption spectra were measured by UV-vis. The formation of indophenol blue was measured by absorbance at 655 nm. The concentration-absorbance curves were plotted using a series of standard ammonium chloride solutions.

NMR determination of ammonia. The amount of produced NH₃ was also determined by ¹H NMR. 2 mL of the reacted electrolyte was firstly removed from the cathode chamber and neutralized by H₂SO₄ aqueous solution (2 mL, 1 M). After that, the neutralized electrolyte (30 μ L) was mixed with maleic acid (as the internal standard. 10 μ L, 3.6 mM) aqueous solution, H₂SO₄ aqueous solution (10 μ L, 4 M), and DMSO-d6 (550 μ L). A small amount of tetramethylsilane was added as a reference. All ¹H NMR experiments were performed by using pre-saturation experiments for water suppression. The concentration of NH₃ can be determined by comparing the integral area (I) of the vinylic singlets for maleic acid (6.25 ppm, 2H) with the typical triplet for ammonium (7.18 ppm, 4H) based on the following equation:²

$$C_{NH_{4}^{+}} = \frac{I_{NH_{4}^{+}} / H_{NH_{4}^{+}}}{I_{S} / H_{S}} \times C_{S}$$

where C_{NH4+} and C_S are the concentrations of ammonium and maleic acid, respectively; H_{NH4+} and H_S are the number of protons for ammonium and maleic acid, respectively; I_{NH4+} and I_S are the integrals of ¹H NMR peaks for ammonium and maleic acid, respectively. To further minimize experimental error, concentration-integrated area ratio curves were also plotted through a series of standard ammonium chloride solutions. To confirm that N element in NH₃ was derived from the NO₃⁻, we performed isotope labeling experiments in 0.1 M K¹⁵NO₃/0.1 M K₂SO₄ electrolyte, and the produced ¹⁵NH₄⁺ was verified by ¹H NMR.

Calculations of NH₃ yield rate and Faradaic efficiency (FE). The NH₃ yield rate was calculated using the following equation:³

yield rate_{NH3} =
$$\frac{C_{NH_3} \times V}{t \times m_{cat}}$$

The NH₃ Faradaic efficiency (FE) was calculated according to following equation [3]:

$$FE_{NH_3} = \frac{C_{NH_3} \times V \times 8 \times F}{M_{NH_3} \times Q}$$

where C_{NH3} is the measured NH₃ concentration, V is the volume of the cathodic electrolyte, t is the reduction time, m_{cat} is the loading mass of catalysts, F is the Faraday constant (96485 C·mol⁻¹), M_{NH3} is the molar mass of NH₃, and Q is the total charge passing the electrode.

2 Supplementary results

Fig. S1 XRD patterns of the (BS)_{1-x}CF samples, with enlargements in the 2-theta ranges of 31-33°.

Fig. S2 Lattice parameter of the (BS)_{1-x}CF samples.

Fig. S3 XRD pattern of the (BS)0.75CF sample.

Fig. S4 SEM images of (BS)_{1-x}CF samples (Scale bar: 500 nm), (a) BSCF, (b) (BS)_{0.95}CF, (c) (BS)_{0.90}CF, (d) (BS)_{0.85}CF, and (e) (BS)_{0.80}CF.

Fig. S5 N₂ adsorption-desorption isotherms of (a) BSCF, (b) (BS)_{0.95}CF, (c) (BS)_{0.90}CF, (d) (BS)_{0.85}CF, and (e) (BS)_{0.80}CF. (f) BET specific surface areas of (BS)_{1-x}CF samples.

Fig. S6 Wide-scan survey XPS spectra of (BS)_{1-x}CF samples.

Fig. S7 N 1s XPS spectra of (BS)_{1-x}CF samples.

Fig. S8 Ba 4d and Sr 3d XPS spectra of the (BS)_{1-x}CF samples.

Fig. S9 LSV curves of the (BS)_{0.85}CF/C and C (Carbon) in 0.5 M KNO₃/0.1 M K₂SO₄ mixed electrolyte.

Fig. S10 UV-vis calibration curves for the determination of NH₃ in ultrapure water using a series of ammonium chloride solutions of known concentration as standards. (a) UV-vis curves of indophenol assays with NH₄⁺ after incubated for 2 h and (b) calibration curve used for estimation of NH₃ by NH₄⁺ of different concentrations.

Fig. S11 ¹H NMR calibration curves of NH₃ in 0.5 M KNO₃/0.1 M K₂SO₄ mixed electrolyte using ammonium chloride solutions of known concentration as standards. (a) ¹H NMR spectra of NH₄⁺ using maleic acid as an internal standard and (b) calibration curve used for estimation of NH₃ by NH₄⁺ of different concentrations.

Fig. S12 UV-vis curves of electrolytes before and after electrocatalysis test for (BS)_{0.85}CF in a K₂SO₄ solution without KNO₃.

Fig. S13 LSV curves of the (BS)_{0.85}CF in 0.5 M KNO₃/0.1 M K₂SO₄ mixed electrolyte before and after the cycle electrolysis test.

Fig. S14 CV curves with various scan rates (5, 10, 20, 40, 70, and 100 mV·s⁻¹) of (**a**) BSCF, (**b**) (BS)_{0.95}CF, (**c**) (BS)_{0.90}CF, (**d**) (BS)_{0.85}CF, and (**e**) (BS)_{0.80}CF. (**f**) Linear fitting curves of the current density difference against scan rates of the (BS)_{1-x}CF catalysts.

Name	$Co^{4+} 2p_{1/2}$	$Co^{3+} 2p_{1/2}$	$Co^{4+} 2p_{3/2}$	$Co^{3+} 2p_{3/2}$
Peak position (eV)	795.6	794.2	780.4	779.0
FWHM	0.97	1.22	1.27	1.48
Peak area	8578	13295	17157	26591
(BS)0.95CF/Co ^{+3.41}				
Name	$Co^{4+} 2p_{1/2}$	$Co^{3+} 2p_{1/2}$	$Co^{4+} 2p_{3/2}$	$Co^{3+} 2p_{3/2}$
Peak position (eV)	795.5	794.1	780.3	778.9
FWHM	0.89	1.16	1.08	1.39
Peak area	20368	28690	40736	57380
(BS)0.90CF/Co ^{+3.41}				
Name	$Co^{4+} 2p_{1/2}$	$Co^{3+} 2p_{1/2}$	$Co^{4+} 2p_{3/2}$	$Co^{3+} 2p_{3/2}$
Peak position (eV)	795.5	794.1	780.3	778.9
FWHM	0.94	1.19	1.19	1.43
Peak area	18864	26715	37728	53430
(BS)0.85CF/Co ^{+3.43}				
Name	$Co^{4+} 2p_{1/2}$	$Co^{3+} 2p_{1/2}$	$Co^{4+} 2p_{3/2}$	$Co^{3+} 2p_{3/2}$
Peak position (eV)	795.4	794.1	780.2	778.9
FWHM	FWHM 0.92		1.11	1.22
Peak area	24411	31502	48823	63004
(BS) _{0.80} CF/Co ^{+3.40}				
Name	$Co^{4+} 2p_{1/2}$	$Co^{3+} 2p_{1/2}$	$Co^{4+} 2p_{3/2}$	$Co^{3+} 2p_{3/2}$
Peak position (eV)	795.4	794.1	780.2	778.9
FWHM	0.96	1.01	1.14	1.24
Peak area	20904	30759	41809	61519

Table S1. Co 2p XPS peak fitting parameters and average valence state of Fe in(BS)1-xCF samples.

BSCF/Co^{+3.39}

bberne				
Name	$Fe^{3+} 2p_{1/2}$	$Fe^{2+} 2p_{1/2}$	$Fe^{3+} 2p_{3/2}$	$Fe^{2+} 2p_{3/2}$
Peak position (eV)	725.1	722.9	711.7	709.5
FWHM	4.00	3.37	3.27	2.6
Peak area	1048	1021	2097	2043
(BS)0.95CF/Fe ^{+2.47}				
Name	$Fe^{3+} 2p_{1/2}$	$Fe^{2+} 2p_{1/2}$	$Fe^{3+} 2p_{3/2}$	$Fe^{2+} 2p_{3/2}$
Peak position (eV)	724.9	722.9	711.5	709.5
FWHM	4.00	3.10	3.16	2.60
Peak area	2270	2491	4541	4982
(BS)0.90CF/Fe ^{+2.48}				
Name	$Fe^{3+} 2p_{1/2}$	$Fe^{2+} 2p_{1/2}$	$Fe^{3+} 2p_{3/2}$	$Fe^{2+} 2p_{3/2}$
Peak position (eV)	724.9	722.9	711.5	709.5
FWHM	4.00	3.16	2.98	2.69
Peak area	1998	2131	3997	4262
(BS)0.85CF/Fe ^{+2.48}				
Name	$Fe^{3+} 2p_{1/2}$	$Fe^{2+} 2p_{1/2}$	$Fe^{3+} 2p_{3/2}$	$Fe^{2+} 2p_{3/2}$
Peak position (eV)	724.9	723.1	711.5	709.7
FWHM	4.00	3.32	3.29	2.83
Peak area	2697	2884	5394	5769
(BS) _{0.80} CF/Fe ^{+2.49}				
Name	$Fe^{3+} 2p_{1/2}$	$Fe^{2+} 2p_{1/2}$	$Fe^{3+} 2p_{3/2}$	$Fe^{2+} 2p_{3/2}$
Peak position (eV)	724.9	723.0	711.5	709.6
FWHM	4.00	3.52	3.37	2.89
Peak area	2762	2783	5525	5567

Table S2. Fe 2p XPS peak fitting parameters and average valence state of Fe in(BS)1-xCF samples.

BSCF/Fe^{+2.50}

Sample		B-site average valence states	Oxygen vacancy/δ
	1	2.837	0.581
DOCE	2	2.892	0.553
BSCF	3	2.805	0.597
	Average	2.844	0.577
	1	2.807	0.646
(DC) CE	2	2.759	0.670
(BS) _{0.95} CF	3	2.860	0.619
	Average	2.808	0.645
	1	2.836	0.681
(DS) CE	2	2.784	0.707
(BS)0.90CF	3	2.837	0.681
	Average	2.819	0.689
	1	2.843	0.728
(DC) CE	2	2.844	0.727
(BS) _{0.85} CF	3	2.828	0.735
	Average	2.838	0.730
	1	2.825	0.787
(\mathbf{DS}) CE	2	2.860	0.769
(DS) _{0.80} Cr	3	2.862	0.768
	Average	2.849	0.774

Table S3. The B-site average valence states and oxygen vacancy (δ) of the $(Ba_{0.5}Sr_{0.5})_{1-x}Co_{0.8}Fe_{0.2}O_{3-\delta}$ ((BS)_{1-x}CF) obtained by iodometric titration.

Table S4. O 1s XPS peak fitting parameters and the concentration of oxygenvacancies on $(BS)_{1-x}CF$ surfaces.

BSCF $(O_2^{2-}/O^{-})\% = 38.0\%$

Name	Adsorbed H ₂ O	Adsorbed O ₂ /-OH	O2 ^{2-/} O ⁻	Lattice O ^{2–}			
Peak position (eV)	532.8	530.9	529.4	528.6			
FWHM	IM 1.84 1.73		1.27	1.79			
Peak area	4171	35424	2459	3996			
$(BS)_{0.95}CF (O_2^{2-}/O^{-})\% = 39.9\%$							
Name	Adsorbed H ₂ O	Adsorbed O ₂ /-OH	O2 ^{2-/} O ⁻	Lattice O ^{2–}			
Peak position (eV)	532.8	530.9	529.4	528.7			
FWHM	1.83	1.62	1.22	1.58			
Peak area	9276	77404	6217	9352			
(BS)0.90CF (O2 ^{2-/} C)% = 49.6%						
Name	Adsorbed H ₂ O	Adsorbed O ₂ /-OH	O2 ^{2-/} O ⁻	Lattice O ^{2–}			
Peak position (eV)	532.9	530.9	529.4	528.6			
FWHM	1.70	1.71	1.18	1.47			
Peak area	7442	72593 6650		6741			
(BS)0.85CF (O2 ^{2-/} C)% = 53.4%						
Name	Adsorbed H ₂ O	Adsorbed O ₂ /-OH	O2 ^{2-/} O ⁻	Lattice O ^{2–}			
Peak position (eV)	532.8	530.9	529.4	528.7			
FWHM	1.77	1.59	1.17	1.52			
Peak area	8260	77815	9585	8363			
$(BS)_{0.80}CF (O_2^{2-}/O^{-})\% = 55.1\%$							
Name	Adsorbed H ₂ O	Adsorbed O ₂ /-OH	O2 ^{2-/} O ⁻	Lattice O ^{2–}			
Peak position (eV)	532.9	530.9	529.4	528.7			
FWHM	1.71	1.59	1.25	1.67			
Peak area	7382	70280	10300	8391			

		•				
		Potential FE		NH3 Yie	NH ₃ Yield rate	
Catalyst	Electrolyte	(V vs. RHE)	(%)	(mg·h ⁻¹ ·mg _{cat} ⁻¹)	(mg·h ⁻¹ ·cm ⁻²)	Re
	0.1 M K ₂ SO ₄ , 0.5		~75		7.82	3
Fe SAC	M KNO3	-0.66		~20		
	0.05 M PBS, 0.16	0.45	04.0	0.15	0.31	4
FeMo-N-C	M KNO3	-0.45	94.0			
	0.1 M KOH, 0.01	0.5	01.1	216		5
Cu Nanodisks	M KNO3	-0.5	81.1	2.16		5
D' Nous constals	1.0 M KOH, 0.5	0.5	00 (16 E		6
Bi Nanocrystais	M KNO3	-0.5	90.6	46.5		0
	0.5 M Na ₂ SO ₄ , 50	-1.3	06.5	0.92		7
Pd-Cu ₂ O	ppm NaNO ₃	(V vs. SCE)	90.5			,
CuPd	1 M KOH, 1 M	-0.6	02.5	106.2		8
Curu	KNO3		72.3			
TiO _{2-x}	0.5 M Na ₂ SO ₄ , 50	-1.6	85.0	0.76		9
	ppm NaNO ₃	(V vs. SCE)	85.0	0.70		
Cu Nanosheets	0.1 M KOH, 10	-0.15	99.7	0.39		10
Cu Tulloslicous	mM KNO3	0.15	<i>,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
LacuO	0.5 M Na ₂ SO ₄ , 50	-0.68	75.3	1.18		11
2420404	ppm NaNO ₃		, 0.0			
Ni3N	0.5 M Na ₂ SO ₄ ,	-0.85	89.5	11.7	4.71	12
	0.05 M NaNO ₃					
Ru Nanoclusters	1 M KOH, 1 M	-0.2	~100	94 5	19.9	13
	KNO3					
Pd	0.1 M Na ₂ SO ₄ ,	-0.7	79.9	46.5	9.32	14
Nanocrystalline	0.1 M NaNO ₃					
Cu-O _v -W	0.5 M Na ₂ SO ₄ ,	-0.7	94.6	5.84		15

Table S5. The comparison of the electrocatalytic performance of (BS)_{0.85}CF with other state-of-the-art NO₃ER catalysts.

0.05 M NaNO3

(BS)0.85CF	M KNO ₃					work
	0.1 M K2SO4, 0.5	-0.45	97.9	143.3	14.6	This
La _x FeO _{3-δ}	0.1 M Na2SO4, 0.1 M NaNO3	-0.8	78.1		1.02	27
PPy-Cu	0.4 M K ₂ SO ₄ , 0.2 M KNO ₃	-0.61	91.9	9.99		26
Fe/CoP	1 M KOH, 50 mM KNO3	-0.25	93.3	27.6		25
CuFe ₂ O ₄	0.1 M PBS, 0.1 M NO3 ⁻	-1.0	91.1	9.21		24
Fe SAC	0.5 M KNO3, 0.1 M K2SO4	-0.68	~92	46.0		23
Cu/Pd/CuO _x	$0.5 \text{ M K}_2\text{SO}_4, 50$ mg L ⁻¹ KNO ₃ -N	-1.3 (V vs. SCE)	84.0	1.51		22
PdN	0.1 M Na2SO4, 5 mM NaNO3	-0.7	96.1	3.76		21
1-Cu	0.5 M Na2SO4, 5 mM NaNO3	-0.9	85.5	53.4	1.12	20
BiFeO3	0.1 M KOH, 0.1 M KNO3	-0.6	96.8	90.4		19
Co ₃ O ₄ @NiO	0.5 M Na ₂ SO ₄ , 200 ppm NaNO ₃	-0.7	54.9	0.12		18
O-Cu-PTCDA	0.1 M PBS, 500 ppm NO3-N	-0.4	85.9	0.43		17
Zr-MOFs	0.1 M Na ₂ SO ₄ , 500 ppm NaNO3	-1.3	58.1	4.88		16

References

- 1. D. Zhu, L. Zhang, R. E. Ruther and R. J. Hamers, *Nat Mater*, 2013, **12**, 836-841.
- 2. Z. Fang, Z. Jin, S. Tang, P. Li, P. Wu and G. Yu, ACS Nano, 2022, 16, 1072–1081
- E. Murphy, Y. Liu, I. Matanovic, S. Guo, P. Tieu, Y. Huang, A. Ly, S. Das, I. Zenyuk, X. Pan,
 E. Spoerke and P. Atanassov, ACS Catal, 2022, 12, 6651-6662.
- K. Wu, C. Sun, Z. Wang, Q. Song, X. Bai, X. Yu, Q. Li, Z. Wang, H. Zhang, J. Zhang, X. Tong, Y. Liang, A. Khosla and Z. Zhao, ACS Mater Lett, 2022, 4, 650-656.
- N. Zhang, J. Shang, X. Deng, L. Cai, R. Long, Y. Xiong and Y. Chai, ACS Nano, 2022, 16, 4795-4804.
- Y. Xu, K. Ren, T. Ren, M. Wang, Z. Wang, X. Li, L. Wang and H. Wang, *Appl Catal B Environ*, 2022, **306**, 121094.
- Q. Gao, H. S. Pillai, Y. Huang, S. Liu, Q. Mu, X. Han, Z. Yan, H. Zhou, Q. He, H. Xin and H. Zhu, *Nat Commun*, 2022, 13, 2338.
- 8. R. Jia, Y. Wang, C. Wang, Y. Ling, Y. Yu and B. Zhang, ACS Catal, 2020, 10, 3533-3540.
- X. Fu, X. Zhao, X. Hu, K. He, Y. Yu, T. Li, Q. Tu, X. Qian, Q. Yue, M. R. Wasielewski and Y. Kang, *Appl Mater Today*, 2020, 19, 100620.
- Z. Gong, W. Zhong, Z. He, C. Jia, D. Zhou, N. Zhang, X. Kang and Y. Chen, *Catal Today*, 2022, 402, 259-265.
- 11. X. Zhang, G. Ma, L. Shui, G. Zhou and X. Wang, *Chem Eng J*, 2022, **430**, 132666.
- J. Li, G. Zhan, J. Yang, F. Quan, C. Mao, Y. Liu, B. Wang, F. Lei, L. Li, A. W. M. Chan, L. Xu,
 Y. Shi, Y. Du, W. Hao, P. K. Wong, J. Wang, S. X. Dou, L. Zhang and J. C. Yu, *J Am Chem Soc*,
 2020, 142, 7036-7046.
- Y. Han, X. Zhang, W. Cai, H. Zhao, Y. Zhang, Y. Sun, Z. Hu, S. Li, J. Lai and L. Wang, J Colloid Interf Sci, 2021, 600, 620-628.
- D. Chen, S. Zhang, X. Bu, R. Zhang, Q. Quan, Z. Lai, W. Wang, Y. Meng, D. Yin, S. Yip, C. Liu, C. Zhi and J. C. Ho, *Nano Energy*, 2022, 98, 107338.
- M. Jiang, J. Su, X. Song, P. Zhang, M. Zhu, L. Qin, Z. Tie, J. L. Zuo and Z. Jin, *Nano Lett*, 2022, 22, 2529-2537.
- 16. Z. Y. Wu, M. Karamad, X. Yong, Q. Huang, D. A. Cullen, P. Zhu, C. Xia, Q. Xiao, M.

Shakouri, F. Y. Chen, J. Y. T. Kim, Y. Xia, K. Heck, Y. Hu, M. S. Wong, Q. Li, I. Gates, S. Siahrostami and H. Wang, *Nat Commun*, 2021, **12**, 2870.

- 17. G.-F. Chen, Y. Yuan, H. Jiang, S.-Y. Ren, L.-X. Ding, L. Ma, T. Wu, J. Lu and H. Wang, *Nat Energy*, 2020, **5**, 605-613.
- 18. Y. Wang, C. Liu, B. Zhang and Y. Yu, *Sci China Mater*, 2020, **63**, 2530-2538.
- J. Wang, D. Wu, M. Li, X. Wei, X. Yang, M. Shao and M. Gu, *Nano Lett*, 2022, 22, 5600-5606.
- 20. Y.-T. Xu, M.-Y. Xie, H. Zhong and Y. Cao, ACS Catal, 2022, 12, 8698-8706.
- 21. L. Sun and B. Liu, *Adv Mater*, 2023, **35**, 2207.
- 22. T. Ren, Z. Yu, H. Yu, K. Deng, Z. Wang, X. Li, H. Wang, L. Wang and Y. Xu, *Appl Catal B Environ*, 2022, **318**, 121805.
- W.-D. Zhang, H. Dong, L. Zhou, H. Xu, H.-R. Wang, X. Yan, Y. Jiang, J. Zhang and Z.-G. Gu, *Appl Catal B Environ*, 2022, 317, 121750.
- H. Zhu, S. Dong, X. Du, H. Du, J. Xia, Q. Liu, Y. Luo, H. Guo and T. Li, *Catal Sci Technol*, 2022, 12, 4998-5002.
- Q. L. Hong, Z. N. Zhang, X. H. Wang, S. B. Yin, F. Shi, S. N. Li and Y. Chen, *Inorg Chem*, 2022, 61, 14397-14402.
- 26. Z. Li, L. Wang, Y. Cai, J.-R. Zhang and W. Zhu, J Hazard Mater, 2022, 440, 129828.
- 27. Q. Yin, S. Hu, J. Liu and H. Zhou, Sustain Energ Fuels, 2022, 6, 4716-4725.