Amorphous Carbon Coating Enhances Activity of High Rate CO₂ Electroreduction to CO

Yiwen Ma, Wenzhe Niu, Wenjuan Shi, Xiaoxiong Huang, Yi Liu, Junfeng Chen, Liangyao Xue and Bo Zhang*

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438,

*E-mail addresses: <u>bozhang@fudan.edu.cn</u>

Fig. S1. The scanning electron microscopy images of Ag/C.

Fig. S2. The scanning electron microscopy images of Ag.

Fig. S3. The scanning electron microscopy images of Ag nano.

Fig. S4. The different high-resolution transmission electron microscopy images of the Ag/C.

Fig. S5. The different high-resolution transmission electron microscopy images of the Ag-C.

Fig. S6. Faradaic efficiency of CO of the Ag/C and Ag-C catalysts in 1 M KOH.

Fig. S7. Faradaic efficiencies of CO and H₂ on the Ag/C in 1 M KOH.

Fig. S8. Cathodic energy efficiency at 700 mA cm⁻² of Ag nano, Ag, Ag/C in 1 M KOH.

Fig. S9. X-ray diffraction patterns of the Ag/C before and after reaction.

Fig. S10. (a) Scanning electron microscopy and (c) high-resolution transmission electron microscopy images of the Ag/C before reaction. (b) scanning electron microscopy and (d) high-resolution transmission electron microscopy images of the Ag/C after reaction.

Fig. S11. Cyclic voltammetry curves of Ag nano (a), Ag (b), Ag/C (c) at different scan rates of 25, 50, 75, 100 and 125 mV s⁻¹ collected.

Fig. S12. CO₂ adsorption isotherm curve of amorphous carbon powders.

Fig. S13. Temperature programmed desorption of CO₂ measurement (CO₂-TPD) profiles of amorphous carbon powders.

Catalyst	Crystallite sizes(nm)	FWHM		
Ag nano	27.1	0.348		
Ag	45.3	0.270		
Ag/C	47.5	0.222		

Table S1. The crystal sizes and full width at half maxima (FWHM) values of the

(111) plane of the catalysts.

Catalyst	R _s (Ω)	$R_{ct}(\Omega)$	
Ag nano	7.189	5.629	
Ag	6.802	1.681	
Ag/C	6.884	0.644	

 Table S2. Parameter values of equivalent circuit components.

Catalysts	j (mA cm ⁻²)	FEco(%)	References
	-800	95	
Ag/C	-700	96.6	This work
	-600	95.3	
Ag powder	-480	91.2	11
Ag/MPL-3C	-100	98.80	2 ²
sputtered	180	80.70	23
Ag/PTFE	-180	09.70	5
Ag/PTFE	-253	84.30	4 ⁴
Ag NP	-281	97.5	55
Ag NP	-248	94.70	66
Ag/C	-231	83.5	7^7
Ag DAT	-109	93	88
Ag-NOLI	-500	84	9 ⁹
AgSn	-200	100	10^{10}
AgNP/MWCNT	-368	95	11 ¹¹
Ag-alloyed Zn	-400	72	12 ¹²
Au25/C	-600	90	13 ¹³
AuCu	-104	75	14 ¹⁴
AuCuB	-76	99	15 ¹⁵
MWNT/PyPBI/Au	-267	60	16 ¹⁶
h-NiNC	-513	90	17 ¹⁷
SbCu	-497	91	18 ¹⁸
ZnAg	-500	74	19 ¹⁹

Table S3. Performance of CO₂ reduced to CO on contrast catalysts.

References

- 1. S. Verma, X. Lu, S. Ma, R. I. Masel and P. J. Kenis, *Phys Chem Chem Phys*, 2016, **18**, 7075-7084.
- R. Wang, H. Haspel, A. Pustovarenko, A. Dikhtiarenko, A. Russkikh, G. Shterk, D. Osadchii,
 S. Ould-Chikh, M. Ma, W. A. Smith, K. Takanabe, F. Kapteijn and J. Gascon, *ACS Energy Letters*, 2019, 4, 2024-2031.
- C.-T. Dinh, F. P. García de Arquer, D. Sinton and E. H. Sargent, *ACS Energy Letters*, 2018, 3, 2835-2840.
- C. M. Gabardo, A. Seifitokaldani, J. P. Edwards, C.-T. Dinh, T. Burdyny, M. G. Kibria, C. P. O'Brien, E. H. Sargent and D. Sinton, *Energy & Environmental Science*, 2018, **11**, 2531-2539.
- 5. B. Kim, F. Hillman, M. Ariyoshi, S. Fujikawa and P. J. A. Kenis, *Journal of Power Sources*, 2016, **312**, 192-198.
- 6. S. Ma, R. Luo, S. Moniri, Y. Lan and P. J. A. Kenis, *Journal of The Electrochemical Society*, 2014, **161**, F1124-F1131.
- J. Hong, K. T. Park, Y. E. Kim, D. Tan, Y. E. Jeon, J. E. Park, M. H. Youn, S. K. Jeong, J. Park,
 Y. N. Ko and W. Lee, *Chemical Engineering Journal*, 2022, 431.
- C. E. Tornow, M. R. Thorson, S. Ma, A. A. Gewirth and P. J. Kenis, *J Am Chem Soc*, 2012, 134, 19520-19523.
- 9. D. Kim, S. Yu, F. Zheng, I. Roh, Y. Li, S. Louisia, Z. Qi, G. A. Somorjai, H. Frei, L.-W. Wang and P. Yang, *Nature Energy*, 2020, **5**, 1032-1042.
- C. Cai, B. Liu, K. Liu, P. Li, J. Fu, Y. Wang, W. Li, C. Tian, Y. Kang, A. Stefancu, H. Li, C. W. Kao, T. S. Chan, Z. Lin, L. Chai, E. Cortes and M. Liu, *Angew Chem Int Ed Engl*, 2022, **61**, e202212640.
- 11. S. Ma, R. Luo, J. I. Gold, A. Z. Yu, B. Kim and P. J. A. Kenis, *J. Mater. Chem. A* , 2016, **4**, 8573-8578.
- 12. S. Lamaison, D. Wakerley, J. Blanchard, D. Montero, G. Rousse, D. Mercier, P. Marcus, D. Taverna, D. Giaume, V. Mougel and M. Fontecave, *Joule*, 2020, **4**, 395-406.
- 13. B. Kim, H. Seong, J. T. Song, K. Kwak, H. Song, Y. C. Tan, G. Park, D. Lee and J. Oh, *ACS Energy Lett.*, 2019, **5**, 749-757.
- 14. Y. Han, Z. Wang, X. Han, W. Fang, Y. Zhou, K. Lei, B. You, H. S. Park and B. Y. Xia, *ACS Sustain. Chem. Eng.*, 2021, **9**, 2609-2615.
- 15. Y. Liu, Y. Fang, Q. Yuan, J. Lu and H. Wang, *Green Chem.*, 2023, **25**, 1339-1344.
- H. M. Jhong, C. E. Tornow, C. Kim, S. Verma, J. L. Oberst, P. S. Anderson, A. A. Gewirth, T. Fujigaya, N. Nakashima and P. J. A. Kenis, *Chemphyschem*, 2017, 18, 3274-3279.
- 17. Y. Chen, J. Zhang, J. Tian, Y. Guo, F. Xu, Y. Zhang, X. Wang, L. Yang, Q. Wu and Z. Hu, *Adv. Funct. Mater.*, 2023, 2214658.
- J. Li, H. Zeng, X. Dong, Y. Ding, S. Hu, R. Zhang, Y. Dai, P. Cui, Z. Xiao, D. Zhao, L. Zhou, T. Zheng, J. Xiao, J. Zeng and C. Xia, *Nat Commun*, 2023, **14**, 340.
- S. Lamaison, D. Wakerley, F. Kracke, T. Moore, L. Zhou, D. U. Lee, L. Wang, M. A. Hubert,
 J. E. Aviles Acosta, J. M. Gregoire, E. B. Duoss, S. Baker, V. A. Beck, A. M. Spormann, M.
 Fontecave, C. Hahn and T. F. Jaramillo, *Adv Mater*, 2022, **34**, e2103963.