
1 Supporting Information

2 Efficient Ammonia Photosynthesis from Nitrate by Graphene/Si 

3 Schottky Junction Integrated with Ni-Fe LDH Catalyst

4 Chun-Hao Chiang,‡a Yu-Ting Kao,‡a Po-Hsien Wu,a Ting-Ran Liu,a Jia-Wei Lin,b Po-

5 Tuan Chen,c Jr-Wen Lin,a Shan-Chiao Yang,a Hsuen-Li Chen,a Shivaraj B. Patil,d Di-

6 Yan Wang *d and Chun-Wei Chen *abe

7 a Department of Materials Science and Engineering, National Taiwan University, 

8 Taipei 10617, Taiwan

9 b Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, 

10 Taiwan

11 c Department of Vehicle Engineering, National Taipei University of Technology, Taipei 

12 10608, Taiwan

13 d Department of Chemistry, Tunghai University, Taichung 40704, Taiwan

14 e Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan 

15 University, Taipei 10617, Taiwan

16 ‡ These authors contributed equally to this work.

17 Corresponding author: Di-Yan Wang (E-mail: diyanwang@thu.edu.tw), Chun-Wei 

18 Chen (chunwei@ntu.edu.tw)

19

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.
This journal is © The Royal Society of Chemistry 2023



20

21 Figure S1. The Auger spectrum of the as-deposited Ni-Fe LDH on graphene/Si 

22 heterojunction.
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25
26 Figure S2. The EIS analysis of the (a) pristine Si and (b) graphene/Si junction in the 

27 electrodeposition solution of Ni-Fe LDH.
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31 Figure S3. The XPS O 1s spectrum of the as-deposited Ni-Fe LDH.
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35 Figure S4. The PEC performances of the Ni-Fe LDH/graphene/Si heterojunction 

36 photocathode in 0.5 M Na2SO4 with various nitrate concentrations (0.01 M, 0.05 M, 0.1 

37 M, and 0.5 M). (a) Polarization curves and the (b) corresponding Faradaic efficiencies 

38 of the PEC device.
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Potential (V vs. RHE) -0.15 -0.25 -0.35 -0.45

FENH3 (%) 84.57 84.98 74.08 73.01

FENO2- (%) 3.08 1.78 1.93 2.04

41 Table S1. The Faradaic efficiencies of NH3 and NO2
- products of the Ni-Fe 

42 LDH/graphene/Si PEC cathode under -0.15 V, -0.25 V, -0.35 V, and -0.45 V (vs. RHE) 

43 in 0.5 M Na2SO4 and 0.1 M NaNO3.
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47 Figure S5. (a) The chronoamperometric curves and (b) absorbance spectra with 

48 indophenol indicator for two-hour measurements of the Ni-Fe LDH/graphene/pyramid 

49 Si heterojunction photocathode.
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53 Figure S6. The XRD spectrum of Ni-Fe LDH electrodeposited on pyramid Si.
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57 Figure S7. The XPS (a) Fe 2p, (b) Ni 2p, and (c) O 1s spectra of Ni-Fe LDH 

58 electrodeposited on pyramid Si.
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62 Figure S8. The PEC LSV curves of the Ni-Fe LDH/graphene/Si for HER and NTRR. 

63 For HER, the electrolyte is 0.5 M Na2SO4. For NTRR, the electrolyte is prepared by 

64 0.5 M Na2SO4 and 0.1 M NaNO3.
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67 DFT calculation: 

68 The NTRR on Ni-Fe LDH surface model with oxygen vacancy was simulated using 
69 Vienna ab initio simulation package (VASP). The model has the vacuum space of larger 
70 than 10 Å. The electron-ion interaction was evaluated via the projector augmented-
71 wave (PAW) pseudopotential method, and the exchange-correlation energy functional 
72 was covered with the generalized gradient approximation (GGA). The Monkhorst pack 
73 k-point grid was set as 2 × 2 × 1 in our calculations for each model. An energy cutoff 
74 of 500 eV was used for the plane-wave basis set, and structural relaxation was 
75 iteratively performed until the force of each atom was reduced to within 0.01 eV Å-1. 
76 The intermediated states are chosen referred to the literature (ACS Catal. 2019, 9, 
77 7052−7064).
78
79 For reactions involving proton and electron transfer, 
80 A + H+ + e- → AH          (1)
81 the reaction free energies were estimated through the computational hydrogen electrode 
82 model. Specifically, the free energy dependence of the proton−electron pair on the 
83 electrode potential was determined using the linear free energy dependence of the 
84 electron energy at this potential, which shifts the electron energy by −eU, 

85 μ (H+) + μ (e−) ⇌ 1/2 μ(H2) - eU          (2)

86 where e is the elementary positive charge (1.602176634 × 10−19 C) and U is the 
87 electrode potential on the RHE scale. The free energy change for a specific 
88 electrochemical hydrogenation reaction i as a function of potential, ΔGi(U), was 
89 computed as
90 ΔGi(U) ⇌ ΔEi + ΔZPE – TΔS + eU          (3)
91 where ΔEi is the DFT-computed electronic adsorption energy of adsorbate i. 
92
93 For computing potential-dependent kinetics, we follow the procedure for 
94 nonelectrochemical surface hydrogenation, 
95 A* + H* ⇌ AH* + *          (4)
96 the activation energy (Ea) can be obtained by DFT calculations of the reactant’s 
97 minimum-energy geometry and the corresponding hydrogenation transition state. For 
98 the corresponding electrochemical step, at equilibrium H+ + e− + * ⇌ H* conditions, the 

99 activation energy Ea(U
0) for A* + H+ + e− ⇌ AH* equals Ea. U0 is the equilibrium 

100 potential at which the analogous nonelectrochemical state, μ(H*), is in equilibrium with 

101 its equivalent electrochemical state, μ(H(aq)
+ + e−). Here, U0 equals the hydrogen 



102 adsorption free energy (ΔGH) for a given surface at 0 V vs. RHE. The free energy 

103 change for the electrochemical surface hydrogenation can then be computed by U0 = 

104 [G(AH*) − G(A*) − 1/2G(H2)]/e.

105

106 Figure S9. The reaction Gibbs free energy diagram of the Ni-Fe LDH with oxygen 

107 vacancy on basal plane for nitrate-to-ammonia conversion. The reaction energy barrier 

108 of the rate-determining step resulting from NO* to N* intermediates is 0.65 eV.


