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Experimental section 

Preparation of NiFe LDH/Ni foam electrodes. The NiFe LDH/Ni foam 

electrodes were fabricated using a hydrothermal growth method according to our 

previous report with a slightly modified procedure. Briefly, 0.15 g Ni(NO3)2, 0.20 g 

Fe(NO3)3 and 0.3 g urea were mixed in 36 mL deionized water. After the reagents 

were dissolved, the solution was poured into a 50 mL autoclave with a piece of Ni foam 

placed against the wall. The growth was carried out at 120 °C in an electric oven for 6 

h. After allowing the autoclave to cool naturally to room temperature, the samples were 

removed, washed with deionized water and dried naturally in ambient conditions. 

Conversion of NiFe LDH into NiFePx. The NiFe LDH/Ni foam electrodes were 

transformed into NiFePx through phosphidation in a tube furnace and NaH2PO2 was 

used as the phosphorous source. In detail, NiFe LDH/Ni foam electrodes and 

NaH2PO2 powder were placed at two separate positions in a tube furnace with 

NaH2PO2 located upstream. Typically, 1.0 g NaH2PO2 was used. Subsequently, the 

sample was heated at 350 °C for 2 h in a static N2 atmosphere and then allowed to 

cool naturally to ambient temperature under N2.
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Material characterizations. A Rigaku (Japan) diffractometer (40 kV, 40 mA, 

1600 W, with a Cu-target tube and a graphite monochromator) was used for powder 

X-ray diffractometry (PXRD) at room temperature. Scanning electron microscopy 

(SEM) images were obtained using a JSM-7800F field-emission scanning electron 

microscope (Jeol, Japan). Transmission electron microscopy (TEM), energy 

dispersive X-ray spectroscopy (EDS), and high-resolution TEM (HRTEM) were 

performed using a JEM-2800 microscope (Jeol, Japan). A Thermo Scientific 

ESCALAB 250Xi (Thermo, USA) X-ray photoelectron spectrometer with Al Kα (hν = 

1486.6 eV) radiation was used to examine the oxidation states of the transition metals, 

with the adventitious carbon peak used to calibrate binding energies. The Inductively 

coupled plasma-optical emission spectroscopy (ICP-OES, Agilent 5110, USA) of 

samples was measured to evaluate the metal content in the catalysts.

In-situ surface-enhanced Raman spectra (SERS). The in-situ Surface 

Enhanced Raman spectra were acquired under controlled potentials using a three-

electrode cell, which consisted of a working electrode at the top, a Pt plate counter 

electrode, and an Ag/AgCl reference electrode. The NiFePx was prepared on the Ni 

foam which was sputtered with a 5 nm gold layer. All the Raman spectra were collected 

using Edinburgh Instruments. For all experiments, a laser with a 532 nm excitation 

wavelength and 10 mW power was used. Before the experiments were started, the 

Raman spectral shifts were calibrated routinely against the value of a silicon wafer 

(525 cm-1). The exposure time was 2 s and the accumulation time was 200 s for one 

sample for a scan from -75 to 1575 cm-1. The NiFePx working electrodes were 

anodically scanned from OCP to 1.7 V vs. RHE.

Electrochemical characterizations. Using a three-electrode system, all 

electrochemical experiments were carried out using a CHI760E electrochemical 

workstation. The electrochemical performances of the catalyst electrodes towards 

oxygen evolution and hydrogen evolution were evaluated using a three-electrode 

configuration in 1 M KOH electrolyte, with the Hg/HgO as the reference electrode and 

a Pt plate as the counter electrode. The area of catalysts was 1 cm2. The OER and 
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HER reactions were characterized by linear sweep voltammetry at a scan rate of 1 mV 

s-1 from negative to positive potential on the RHE scale, all polarization curves were 

corrected for IR losses. The Cdl values were determined by acquiring cyclic 

voltammograms at various scan rates (10, 20, 30, 40, 50, mV s-1) in the non-faradaic 

region. The calculation of ECSA according to the method in the literature.1 The stability 

of the electrodes was characterized by chronopotentiometry at 10、50、100 and 200 

mA cm-2 current densities for 5 h. 

The AEM cell measurements were performed on a DongHua DH7001 

Electrochemical workstation. For overall two-electrode water splitting, NiFePx/Ni foam 

and NiFe LDH/Ni foam electrodes were used for hydrogen and oxygen evolution 

respectively, and the reaction was characterized by linear sweep voltammetry at a 

scan rate of 1 mV s-1 from 2 V to 1.3 V. 6 M KOH solution was used as the electrolyte 

and the flow was driven by a peristaltic pump. The Fumasep FAAM-15 anion exchange 

membrane was bought from SciMaterialsHub. The stability was characterized by 

chronopotentiometry at a current density of 300 mA cm-2 for approximately 100 h.
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Figure S1. XRD pattern obtained for NiFe LDH on Ni foam.
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Figure S2. (a, b) Low-magnification and (c) high-magnification SEM images obtained for NiFe 

LDH on Ni foam.
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Figure S3. (a, b) Low-magnification TEM images obtained for NiFe LDH on Ni foam.
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Figure S4. (a) HR-TEM (b) STEM images obtained for NiFe LDH and (c-j) Elemental mapping 

of NiFe LDH.
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Figure S5. The high-resolution XPS spectra obtained for NiFe LDH (a) Fe 2p, (b) Ni 2p, and 

(c) O 1s.
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Figure S6. (a) Low- (b) High-magnification SEM images obtained for NiFePx on Ni foam.
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Figure S7. EDX spectrum obtained for NiFePx on Ni foam.
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Figure S8. The high-resolution XPS spectrum obtained for O 2p for NiFePx.
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Figure S9. I-t curves were measured at different potentials for (a) NiFePx (b) NiFe LDH and 

(c) Ni foam during the HER process.
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Figure S10. CV curves were measured for (a) NiFePx (b) NiFe LDH (c) Ni foam at different 

scan rates.
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Table S1. The ICP-OES data of NiFe LDH and NiFePx

Fe Ni Ni/Fe

NiFe LDH 1.05% 96.99% 92.37%

NiFePx 1.00% 95.90% 95.90%
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Figure S11. (a) Linear sweep voltammetry curves, (b) Tafel slopes of NiFePx, NiFePx-300, 
and NiFePx-400 (scan rate of 1 mV s−1). I-t curves were measured at different potentials for 
(c) NiFePx-300, (d) NiFePx-400.
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Figure 12. The i-t curve of NiFe LDH for HER.
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Figure S13. (a) XRD pattern measured for NiFePx on Ni foam before and after HER stability 

test, (b, c) The Low-magnification SEM images obtained for NiFePx-HS.
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Figure S14. (a, b, c) Low-magnification and (d) high-magnification TEM images obtained for 

NiFePx-HS.
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Figure S15. (a) STEM image obtained for NiFePx-HS and (b) the corresponding elemental 

mapping of the same area showing the distribution of Ni, Fe, P and O.
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Figure S16. Comparison of high-resolution XPS (a) Fe 2p (b) Ni 2p spectra of NiFePx and (c) 

Fe 2p (d) Ni 2p spectra of NiFePx-HS.
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Figure S17. Comparison of high-resolution XPS (a) P 2p (b) O 1s spectra of NiFePx and (c) 

P 2p (d) O 1s spectra of NiFePx-HS.
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Figure S18. I-t curves were measured at different potentials for (a) NiFePx (b) NiFe LDH (c) 

Ni foam during the OER process.
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Figure S19. (a) I-t curves were measured for NiFe LDH on Ni foam and (b) NiFePx on Ni foam 

during the OER process.
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Figure S20. Comparison of high-resolution XPS (a) Fe 2p (b) Ni 2p spectra of NiFeP NiFe 

LDH and (c) Fe 2p (d) Ni 2p spectra of NiFePx-OS.
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Figure S21. A schematic representation of the in-situ Raman device used to perform SERS 
measurements.
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Figure S22. In-situ Raman of NiFe LDH during the OER process.
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Figure S23. (a) HR-TEM (b) STEM image obtained for NiFe LDH and (c) Elemental mapping 

obtained for NiFePx-OS.
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Figure S24. Survey XPS spectra measured for NiFePx-OS.
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Figure S26. XRD pattern measured for NiFePx measured after OER stability test.
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Table S2. Comparison of the electrocatalytic HER performance of the electrode materials 

reported in this work with recently reported electrocatalysts in the literature.

No Electrocatalysts η10 (mV) electrolyte Ref.

NiFePx 112 1 M KOH This work

1 In-NiV LDH 114 1 M KOH 2

2 Co2P/N-P 125 1 M KOH 3

3 N-FeS2 126 1 M KOH 4

4 CNN-500 127 1 M KOH 5

5 Ni1.5Co1.5P/MFs 141 1 M KOH 6

6 Fe@Co-MOF-3 150 1 M KOH 7

7 Fe-Co2P BNR 156 1 M KOH 8

8 sr-NiO 164 1 M KOH 9

9 Co SAs-Co NPs/NCFs 205 1 M KOH 10

10 Fe50Ni50 films 390 1 M KOH 11
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