Supporting Information

Enhancing the Performance of Tin-Based Perovskite Solar Cells through Solvent Purification of Tin Iodide

Guojun Zeng,a, b Dexin Pu,a Lishuai Huang,a Hongling Guan,a Shun Zhou,a Jin Zhou,a Weicheng Shen,a Guang Li,a Guojia Fang,a* Weijun Ke,a, b*

a Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China

b Shenzhen Institute, Wuhan University, Shenzhen 518055, China

*Corresponding Email: gjfang@whu.edu.cn; weijun.ke@whu.edu.cn;
Figure S1. (a) Preparation process of commercial (the control one) SnI₂-based perovskite films.

Figure S2. XRD patterns of control, oxidized, and toluene-washed SnI₂.
Figure S3. Photography of (a) an oxidized SnI$_2$-fabricated perovskite film and (b) a toluene-washed SnI$_2$-fabricated perovskite film.

Figure S4. AFM images of (a) control SnI$_2$, (b) oxidized SnI$_2$, (c) and toluene-washed SnI$_2$-fabricated perovskite films.
Figure S5. Plots of derivative of EQE spectra used to determine bandgaps of (a) control, (b) oxidized, and (c) washed SnI₂-based perovskite films.

Figure S6. A cross-sectional SEM image of a representative FASnI₃ solar cell fabricated from toluene-washed SnI₂.
Figure S7. Photovoltaic parameters of the solar cells using toluene-washed SnI$_2$ with air oxidation for one day, three days, one week, and two weeks.

Figure S8. Long-term shelf storage stability of control, oxidized, and toluene-washed SnI$_2$-fabricated PSCs without encapsulation, which were stored in an N$_2$-filled glovebox at room temperature in the dark.
Figure S9. Light intensity-depended V_{OC} of the solar cells employing (a) control, (b) oxidized, and (c) toluene-washed SnI$_2$.