Supporting Information

Efficiently predicting and synthesizing intrinsic highly fire-safe polycarbonates with processability

Ronghua Yu, a,b Shengda Wang, ${ }^{\text {a,b }}$ Yue Zhu, ${ }^{\text {a,b }}$ Qianyu Li, ${ }^{\text {a,b }}$ Jiangan You, ${ }^{\text {a,b }}$ Jian Qiu, ${ }^{a}$ Yanhui Wang, ${ }^{a}$ Jie Liu, ${ }^{* a}$ Tao Tang*a, ${ }^{\text {b }}$

Table of Contents

1. Experimental section... 2
1.1 Material genome approach (MGA)... 2
1.2 Synthesis of homopolycarbonates (hPCs) .3
1.3 Synthesis of copolycarbonates (co-PCs) 4
2. Results and Discussion. 6
2.1 Two-step computational high-throughput screening 6
2.2 Characterization of
PCs. 10
2.3 DSC and TGA
analysis 14
2.4 PCFC analysis 15
2.5 Fire-safe performance 16
2.6 Transparency of PCs 17
2.7 Morphology and microstructure of residual chars 17
2.8 Pyrolysis analysis. 19
3. References 24

1. Experimental section

1.1 Material genome approach (MGA)

The structure-property relationship of polymers is used as specific "genetic code" to guide high-throughput screening for balancing and optimizing the following property: fire-safe performance and processability (As shown in Figure S2A, the fire-safety and processability of polymers are a pair of contradictory properties). Importantly, a prerequisite for any structureproperty correlation is the ability to identify and reproducibly measure the intrinsic property of interest. ${ }^{1}$ Unfortunately, the burning rate, ignitability and heat-release rate of a polymer are not intrinsic properties in the view of polymer flammability. ${ }^{2}$ Therefore, the structure-property correlation is not suitable to be obtained from these extrinsic quantities. The pyrolysis combustion flow calorimetry (PCFC) is an effective method to evaluate the combustibility of milligram samples, and the fire parameters resulting from PCFC, such as total heat release (h_{c}, kJ / g, refers to the heat of combustion per unit mass of the original polymer), can be used as intrinsic properties of polymers, which are good predictors of fire response and flammability of polymers.

As we know, the largest unique chemical descriptors of polymers are their repeat units that are comprised of chemical groups. One simple method proposed by Van Krevelen to calculate the intrinsic properties of polymers from their chemical groups is the additivity of groups ${ }^{1}$:

$$
\begin{equation*}
P=\sum_{i=1}^{n} \sum_{j=1}^{n} \emptyset_{i j} P_{i j}=\sum_{i=j} \emptyset_{i j} P_{i j}+\sum_{i \neq j} \sum \emptyset_{i j} P_{i j} \tag{S1}
\end{equation*}
$$

Here, $\mathrm{P}_{i j}$ is the contribution of groups i and j to property $\mathrm{P}\left(\mathrm{P}_{i i}=\mathrm{P}_{i}, \mathrm{P}_{i j}=\left(\mathrm{P}_{i}+\mathrm{P}_{j}\right) / 2\right) ; \emptyset_{i j}$ is a dimensionless weighting factor for the interaction between groups i and $j ; x_{i}$ is the mole, mass or volume fraction of the group i. According to the literature ${ }^{31}$, the interaction terms in Equation S1 are usually ignored ($\emptyset_{i j}=0, \mathrm{i} \neq \mathrm{j}$). Briefly, the overall property of the polymer is the sum of the specific group contributions multiplied by the mole, mass or volume fraction of the groups. Such an approach has been proposed for the calculation of h_{c} in PCFC test, and additivity (equation S 1) is assumed for chemical groups on a molar basis ${ }^{3,4}$:

$$
\begin{equation*}
h_{c}=\frac{\sum N_{i} \Omega_{i}}{\sum N_{i} M_{i}} \tag{S2}
\end{equation*}
$$

Here N_{i} and M_{i} are the number of mole and the molar mass of component $\mathrm{i}, \Omega_{\mathrm{i}}$ is the molar contribution of component i. Figure S2B demonstrates the effectiveness of the molar group contribution method in predicting the value of h_{c}.
The polymer aggregation state mainly depends on the molecular structure of polymers and the ambient temperature. When the polymer structure is fixed, the aggregate state will depend on the ambient temperature. It is well known that glass transition temperature (T_{g}) and melting temperature (for crystalline polymers) are two important transition temperatures of polymers, which are closely related to polymer processing performance. For amorphous polymers (such as PC), the T_{g} is a very important transition temperature. Van Krevelen related the T_{g} to the chemical structure of polymers through molar group contribution approach ${ }^{1}$:

$$
\begin{equation*}
T_{g}=\frac{Y_{g}}{M}=\frac{\sum N_{i} Y_{g i}}{\sum N_{i} M_{i}} \tag{S3}
\end{equation*}
$$

Here, $\mathrm{Y}_{\mathrm{g} i}$ is the contribution of group i to $\mathrm{T}_{\mathrm{g}} ; \mathrm{M}$ is the molecular weight of polymer repeating unit. Finally, the values of h_{c} and T_{g} predicted by molar group contribution were used as characteristic indicators for flame retardancy and processability, respectively.

1.2 Synthesis of homopolycarbonates (h-PCs)

1.2.1 Synthesis of phenolphthalein polycarbonate (PP-PC). PP-PC was prepared in a similar manner as BPA-PC in 85% yield. Here Bisphenol A (BPA) was replaced by phenolphthalein (PP). IR (cm^{-1}): $1768(\mathrm{C}=\mathrm{O}), 1615 \sim 1590$ ($\mathrm{C}-\mathrm{C}$ bond ring stretch), 1218 (O-CO-O), 1080 (ArH). ${ }^{1} \mathrm{H}$ NMR (Chloroform-d, ppm): 7.95 (d, 1H, Ar-H), 7.72 (t, 1H, Ar-H), 7.56 (m, 2H, Ar-H), 7.37 (d, 4H, Ar-H), 7.23 (d, 4H, Ar-H).
1.2.2 Synthesis of 4,4-dihyclroxydiphenyl ether polycarbonate (BPE-PC). BPE-PC was prepared in a similar manner as BPA-PC in 77\% yield. Here Bisphenol A was replaced by 4,4dihyclroxydiphenyl ether. IR (cm^{-1}): 1767 ($\mathrm{C}=\mathrm{O}$), 1593 (C-C bond ring stretch), 1220 (O-CO$\mathrm{O}), 1154$ (Ar-O-Ar), $1080(\mathrm{Ar}-\mathrm{H})$. The product was found to be poorly soluble in common solvents (e.g., CHCl_{3}, THF, and DMF)
1.2.3 Synthesis of 4,4'-thiodiphenol polycarbonate (BPT-PC). BPT-PC was prepared in a similar manner as BPA-PC in 80% yield. Here Bisphenol A was replaced by 4,4'-thiodiphenol. IR (cm^{-1}): 1767 ($\mathrm{C}=\mathrm{O}$), 1584 (C-C bond ring stretch), 1221 (O-CO-O), 1184 (Ar-S-Ar), 1080 (Ar-H). The product was found to be poorly soluble in common solvents (e.g., $\mathrm{CHCl}_{3}, \mathrm{THF}$, and DMF).

Synthesis of homopolycarbonates (h-PCs):

Synthesis of copolycarbonates (co-PCs):

Figure S1. Reaction scheme for the synthesis of h-PCs and co-PCs.

1.3 Synthesis of co-PCs

The polycarbonate copolymers were synthesized by polycondensation of two bisphenol monomers in combination with triphosgene using a similar procedure.
1.3.1 Synthesis of phenolphthalein-bisphenol A copolycarbonate (PP-BPA). Bisphenol A (60 mmol), phenolphthalein (60 mmol), tetrabutylammonium bromide $(0.15 \mathrm{mmol})$ and an aqueous NaOH solution (280 mmol) were added to a 1000 mL four-necked round bottom flask. Under an ice-water bath, triphosgene (48 mmol) dissolved in dichloromethane and TEA (5 mmol) were added to the solution. After the dropwise addition, the ice-water bath was removed and the reaction was carried out at $35^{\circ} \mathrm{C}$ for 3 h . The dichloromethane solution was washed with water (three times) and separated. The polymer solution was poured into ethanol, the precipitated product was filtered and washed with ethanol, and the product was dried in a vacuum oven at $80^{\circ} \mathrm{C}$. Yield: 84%; IR $\left(\mathrm{cm}^{-1}\right)$: $2969\left(\mathrm{CH}_{3}\right), 1770(\mathrm{C}=\mathrm{O}), 1614 \sim 1592(\mathrm{C}-\mathrm{C}$ bond ring stretch), $1363\left(\mathrm{CH}_{3}\right)$, 1224 and 1156 (O-CO-O). ${ }^{1} \mathrm{H}$ NMR (Chloroform-d, ppm): 7.52-7.97
(Ar-H in PP structure), 7.35-7.41 (Ar-H in PP structure), 7.20-7.29 (Ar-H in BPA and PP structure), 7.12-7.19 (Ar-H in BPA structure), $1.67\left(-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (Chloroform-d, ppm): $169.23(\mathrm{C}(\mathrm{O}) \mathrm{O}), 152.14-151.41((\mathrm{O}-\mathrm{C}(\mathrm{O})-\mathrm{O})), 151.32-151.27,151.07-150.93,148.95-148.81$, 148.47-148.21, 138.76-138.71, 134.48, 129.77, 128.54-128.49, 127.97-127.92, 126.30, 125.39, 124.02, 121.06-121.00, 120.32-120.26, 90.46-90.50, 42.57, $30.92\left(\mathrm{CH}_{3}\right)$.
1.3.2 Synthesis of phenolphthalein-4,4-dihyclroxydiphenyl ether copolycarbonate (PPBPE). 4,4-dihyclroxydiphenyl ether (60 mmol), phenolphthalein (60 mmol), tetrabutylammonium bromide (0.15 mmol) and an aqueous NaOH solution (280 mmol) were added to a 1000 mL four-necked round bottom flask. Under an ice-water bath, triphosgene (48 mmol) dissolved in dichloromethane and TEA (5 mmol) were added to the solution. After the dropwise addition, the ice-water bath was removed and the reaction was carried out at $35^{\circ} \mathrm{C}$ for 3 h . The dichloromethane solution was washed with water (three times) and separated. The polymer solution was poured into ethanol, the precipitated product was filtered and washed with ethanol, and the product was dried in a vacuum oven at $80{ }^{\circ} \mathrm{C}$. Yield: 78%; IR $\left(\mathrm{cm}^{-1}\right)$: 1767 ($\mathrm{C}=\mathrm{O}$), 1614~1593 (C-C bond ring stretch), 1224 and 1156 (O-CO-O). ${ }^{1} \mathrm{H}$ NMR (Chloroform-d, ppm): 7.52-7.97 (Ar-H in PP structure), 7.35-7.41 (Ar-H in PP structure), 7.207.30 (Ar-H in BPE and PP structure), 7.00-7.07 (Ar-H in BPE structure). ${ }^{13} \mathrm{C}$ NMR (Chloroform-d, ppm): 169.22 (C(O)O), 155.05-154.93 ,151.35-151.43 ((O-C(O)-O)),151.31, $151.05-150.95,146.60-146.48,138.73-138.68,134.50,129.80,128.55,126.33,1254.41$, 124.03, 122.27-122.22, 121.07-121.02, 119.72-119.66, 90.49.
1.3.3 Synthesis of phenolphthalein-4,4'-thiodiphenol copolycarbonate (PP-BPT). 4,4'thiodiphenol (60 mmol), phenolphthalein (60 mmol), tetrabutylammonium bromide (0.15 mmol) and an aqueous NaOH solution (280 mmol) were added to a 1000 mL four-necked round bottom flask. Under an ice-water bath, triphosgene (48 mmol) dissolved in dichloromethane and TEA (5 mmol) were added to the solution. After the dropwise addition, the ice-water bath was removed and the reaction was carried out at $35^{\circ} \mathrm{C}$ for 3 h . The dichloromethane solution was washed with water (three times) and separated. The polymer solution was poured into ethanol, the precipitated product was filtered and washed with ethanol, and the product was dried in a vacuum oven at $80^{\circ} \mathrm{C}$. Yield: 81%; IR $\left(\mathrm{cm}^{-1}\right): 1770(\mathrm{C}=\mathrm{O}), 1616 \sim 1584(\mathrm{C}-\mathrm{C}$ bond ring stretch), 1224 and 1156 (O-CO-O). ${ }^{1} \mathrm{H}$ NMR (Chloroform-d, ppm): 7.52-7.97 (Ar-H in PP structure), 7.34-7.41 (Ar-H in BPT and PP structure), 7.17-7.28 (Ar-H in BPT and PP structure). ${ }^{13} \mathrm{C}$ NMR (Chloroform-d, ppm): 169.22 (C(O)O), 151.61-151.41 ((O-C(O)-O)), 151.27, $150.95-150.92,150.10-150.06,138.69,134.50,133.51,132.31-132.25,129.79,128.55,126.34$, 125.37, 124.02, 121.79-121.81, 121.04-121.02, 90.47 .

2. Results and Discussion

2.1 Two-step computational high-throughput screening

Figure S2. (a) Correlation between heat release and melting point of conventional polymers.
We collected melting temperatures $\left(\mathrm{T}_{\mathrm{m}}\right)$ for more than 20 kinds of polymers from the SciFinder database, and then plotted T_{m} values versus heat release ($h_{\mathrm{c}, \text { exp }}$) measured by PCFC ${ }^{[3,4]}$ for each polymer. The resulting plot is shown in Figure S 2 . It can be seen that polymers with lower T_{m} have higher heat release, such as polyethylene, polypropylene, etc. As expected, polymers with high T_{m} have lower heat release, such as polyphenylene ether, polyether ketone, etc. In particular, the negative correlation between T_{m} and $h_{\mathrm{c}, \exp }$ is more pronounced for a series of polymers with similar groups, such as polyester (PET, PBT), polyether ketone (PEKK, PEK, PEEK) and polyamide (PA12, PA612, PA66, PA6). It is well known that the T_{m} of crystalline polymers is closely related to their processing temperatures, and heat release can be used as an indicator of fire-safety at the molecular level of polymers. So, the fire-safety and processing properties of polymers are a pair of contradictory properties.

Table S1 Chemical structures, molecular weight and assigned Ω and Y_{g} values of 36 groups and the calculated $h_{\mathrm{c}, \mathrm{cal}}$ and $\mathrm{T}_{\mathrm{g}, \mathrm{cal}}$ values of polycarbonate.

No.	Group	$\begin{gathered} \mathbf{M}_{i} \\ {[\mathrm{~g} / \mathrm{mol}} \\ \mathrm{l} \end{gathered}$	$\begin{gathered} \Omega_{i}^{\mathrm{a}} \\ {[\mathbf{M J} / \mathbf{m}} \\ \mathbf{o l}] \end{gathered}$	$\begin{gathered} \mathbf{Y}_{\mathbf{g}}^{\mathbf{b}} \\ {[\mathbf{K}} \\ \mathbf{k g} / \mathbf{m o l}] \end{gathered}$	Prediction	
					$\begin{gathered} h_{\mathrm{c}, \mathrm{cal}} \\ {[\mathrm{~kJ} / \mathrm{g}]} \end{gathered}$	$\begin{aligned} & \mathbf{T}_{\mathrm{g}, \mathrm{cal}} \\ & {\left[{ }^{\circ} \mathrm{C}\right]} \end{aligned}$
-	- 0	60.0	0.22	20	-	-
1		366.3	2.41	234	6.17	322.7
2		284.3	$2.40^{\text {c }}$	$163{ }^{\text {c }}$	7.61	258.4

3		216.3	2.47	111	9.73	201.0
4	（1）	168.2	2.28	67	10.96	108.1
5		152.2	2.16	70	11.22	151.0
6	－1）－0－1－0－	260.2	3.48	104	11.56	114.1
7	－＜－10	228.3	3.24	104	12.00	157.0
8		228.3	3.24	111	12.00	181.2
9		116.2	2.67	65	12.78	102.6
10		184.2	2.94	72	12.94	103.6
11	，	278.4	4.54	138	14.07	193.8
12	［1－2	180.2	3.33	67	14.78	89.0
13	E	242.3	4.32	－	15.02	－
14	－－－－－	242.5	4.35		15.11	
15	）－	234.3	4.46		15.89	
16		194.3	3.84	－	15.97	－
17		266.3	5.11	－	16.33	－
18		318.4	6.14	－	16.81	－
19		256.3	5.15	－	16.97	－
20		208.3	4.35	－	17.03	－
21		243.3	4.99		17.18	
22		208.3	4.50	－	17.59	－
23		346.4	7.19	－	18.23	
24		208.3	4.67	－	18.23	－
25	$\Rightarrow \times$	208.3	4.67	－	18.23	－
26	会位何会	374.5	7.97	－	18.85	

27		222.3	5.18	-	19.13	-
28	\bigcirc	222.3	5.18	-	19.13	-
29		220.3	5.20	-	19.34	-
30		234.3	5.54	-	19.57	-
31		194.3	4.79	87	19.70	147.6
32		234.3	5.71	-	20.15	-
33		248.4	6.05	-	20.33	-
34		260.3	6.88	-	22.16	-
35		289.3	7.67	-	22.58	-
36	ETI	312.4	8.50	-	23.41	-

${ }^{\text {a }}$ The Ω_{i} values were calculated by known group contributions offered by Lyon ${ }^{2,3}$;
${ }^{\mathrm{b}}$ The T_{gi} values were calculated by known group contributions offered by Van Krevelen ${ }^{1}$;
${ }^{\mathrm{c}}$ The Ω_{i} and T_{gi} values of group 2 were unknown, and the values were assigned by the experimental results (Figure S3).
Among these PCs (Table S1), phenolphthalein-based PCs have highly fire-safety, but the molar group contribution of phenolphthalein group to h_{c} is unknown. Therefore, we synthesized PC containing phenolphthalein unit (Figure S3a) and measured the total heat release and T_{g} value of the resultant PC (Figure S3b-3c). Furthermore, we assigned the molar contribution of phenolphthalein group to the total heat release (Figure S3d).

Figure S3. (a) ${ }^{1} \mathrm{H}$ NMR spectra of PC containing phenolphthalein unit, (b-c) properties of this PC, and (d) estimating the Ω and Y_{g} values of group 2 in Table S 1 .

Table S2 Chemical structures and calculated $h_{\mathrm{c}, \text { cal }}$ and $\mathrm{T}_{\mathrm{g}, \text { cal }}$ values of predicted PCs.

6	$\begin{aligned} & \text { BPA- } \\ & \text { PC } \end{aligned}$	(1)	19.70	147.6
7	PP-PC		7.61	258.4
8	BPE-PC		10.96	108.1
9	BPT-PC	[10) s-	12.94	103.6
10	-	(1)	6.17	322.7
11	-	R	6.81	293.9
12		+	7.57	274.8
13	-	+	7.84	247.8
14	-		7.85	265.6
15	-	(r)-	8.46	246.4
16	-	O	8.48	233.2
17	-	(0)-	8.52	255.8
18	-		8.52	265.6
19	-	$t=l_{0}^{10}$	8.56	232.8
20	-	N-M,	8.64	242.9
21	-		8.98	217.4
22	-	$\mathrm{B}_{0}^{0}-\mathrm{N}_{0}^{\circ} \mathrm{M}$	9.27	238.5
23	-		9.61	212.1

24	-	$\mathrm{OC}=0 \text { 요 }$	9.61	223.2
25	-		9.66	265.6
26	-		9.74	201.0
27	-	[10.3	160.0
28	-		10.4	179.2
29	-	K-	10.6	188.8
30	-	K-	10.7	154.4
31	-	O-	10.8	226.3
32	-	[-	10.9	178.5
33	-	K-	10.9	190.9
34	-		11.1	128.7
35	-	K- ${ }_{\text {- }}^{\text {- }}$	11.1	156.7
36	-	(\%)	11.2	151.0
37	-	团-M,	11.2	257.3
38	-		11.2	155.3
39	-	+	11.3	111.6
40	-		11.4	128.8
41	-		11.5	149.0

42	-	K-	11.5	135.3
43	-	凧代-0-100	11.6	114.2
44	-		11.7	154.4
45	-	K-0	11.7	168.4
46	-	+ ¢- <- <-	11.8	134.4
47	-		11.8	146.0
48	-		11.9	105.4
49	-	$[B-\infty-)^{\circ}$	12.0	105.7
50	-		12.0	157.0
51	-		12.0	169.1
52	-		12.0	181
53	-	(-)	12.0	126.0
54	-	+	12.0	109.4
55	-		12.0	148.9
56	-	+	12.1	197.0
57	-	HO-O-O	12.1	125.6
58	-	+	12.2	110.0
59	-		12.3	133.1

60	-	(-)	12.3	146.7
61	-		12.4	132.5
62	-	(-) -	12.4	145.6
63	-	(o)	12.7	102.7
64	-	($)^{-1}$	12.8	159.2
65	-	+	12.8	155.0
66	-		12.9	103.1
67	-	+	12.9	98.3
68	-	Ho-	12.9	103.4
69	-	+	13.0	103.6
70	-	+	13.1	118.1
71	-		13.1	176.8
72	-	+	13.1	188.0
73	-	t-	13.3	126.1
74	-	(\%)	13.3	139.3
75	-	(r)	13.5	157.3
76	-	+ $\mathrm{O}_{2} \mathrm{O}$	13.6	155.9
77	-		13.8	95.6

78	－		13.9	96.4
79	－		14.1	193.8
80	－	＋	14.4	150.3
81	－		14.5	175.4
82	－	为	14.8	89.1
83	－	＋	15.2	129.0
84	－		15.6	129.0
85	－		15.6	152.6
86	－	＋	15.6	165.5
87	－	＋－8）	15.8	149.2
88	－		16.4	126.5
89	－	为婁	16.4	126.5
90	－	¢－	164	174.0
91	－	比	17.3	119.2

2．2 Characterization of PCs

Figure S4. FI-IR spectra of PPA-PC, PP-PC, BPE-PC and BPT-PC.

Figure S5. FI-IR spectra of PP-PC, PP-BPA, PP-BPE and PP-BPT.

Figure S6. 1H NMR spectra of BPA-PC, PP-BPE, PP-BPT and PP-BPT.

Table S3 The number-average molecular weight of PCs

Sample	PP content (mol\%)		$\boldsymbol{M}_{\boldsymbol{n}}$
	Cal.	Exp. $^{\mathbf{a}}$	
BPA-PC	-	-	14611
PP-BPA	50	48	13176
PP-BPE	50	47	16496
PP-BPT	50	49	16220

${ }^{\text {a }}$ The results were obtained from ${ }^{1} \mathrm{H}$ NMR spectra.

Figure S7. (a) 13C NMR spectra of PP-BPA (co-PC) and BPA-PC/PP-PC blend. (b) Detailed C 1 and C1' 13C NMR spectra of PP-BPA (co-PC) and BPA-PC/PP-PC blend

Table S4 Units of linkages in the PP-BPA chain and chemical shifts of carbon atoms

Type \begin{tabular}{c}
Units of linkages in copolymer chain

Chemical

shifts (δ)/ppm
\end{tabular}

For polymer blends, there should be only two chemical shifts of carbon atoms in O-CO-O structure. However, three types of linking units in PP-BPA are observed. So, the ${ }^{13} \mathrm{C}$ NMR results (Figure S7, Table S4) proved the copolymerized structure of PP-BPA.

Figure S8. Detailed C1 and C1' ${ }^{13} \mathrm{C}$ NMR spectra of PP-BPE (co-PC).

Table S5 Units of linkages in the PP-BPE chain and chemical shifts of carbon atoms

Type \begin{tabular}{ccc}

Units of linkages in copolymer chain \& | Chemical |
| :---: |
| shifts ($\mathbf{8}) / \mathbf{p p m}$ |

$\mathrm{ECP} / \mathrm{PCE}$ \& $\mathrm{C}_{\mathrm{PP}}=151.43$

ECE \& \& $\mathrm{C}_{\mathrm{PE}}=\mathrm{C}_{\mathrm{EP}}=151.89$
\end{tabular}

The ${ }^{13} \mathrm{C}$ NMR results (Figure S8, Table S5) proved the copolymerized structure of PP-BPE.

Figure S9. Detailed C1 and C1' ${ }^{13} \mathrm{C}$ NMR spectra of PP-BPT (co-PC).

Table S6 Units of linkages in the PP-BPT chain and chemical shifts of carbon atoms

Type \begin{tabular}{c}
Units of linkages in copolymer chain

Chemical

shifts $(\mathbf{\delta}) / \mathbf{p p m}$

$\mathrm{TCP} / \mathrm{PCT}$

TCT

\end{tabular}

The ${ }^{13} \mathrm{C}$ NMR results (Figure S9, Table S6) proved the copolymerized structure of PP-BPT.

Figure S10. GPC curves of BPA-PC and co-PCs with different chemical structure in THF.

2.3 DSC and TGA analysis

Figure S11. (a-b) DSC and (c-d) TGA curves of BPA-PC and co-PCs with different chemical structure in nitrogen.

2.4 PCFC analysis

Figure S12. (a-f) Heat release rate (HRR) curve of BPA-PC and co-PCs with different chemical structure, obtained from PCFC test in N_{2} and $\mathrm{O}_{2} / \mathrm{N}_{2}$.

Table S7 Comparison for the optimized co-PCs and other polymers

Sample	CAS	$\boldsymbol{h}_{\mathbf{c , e x p}}{ }^{\mathbf{a}}$	$\mathbf{T}_{\mathbf{g}, \mathbf{e x p}}{ }^{\mathbf{b}}$
PMMA	$9011-14-7$	24.3	105
BPA-PC	$25037-45-0$	21.9	148
PSU	$25135-51-7$	17.7	190
PAR	$25212-77-5$	19.4	184
PPSU	$25839-81-0$	11.3	220
PES	$25667-42-9$	11.2	225
PEI	$61128-46-9$	11.8	250
PAI	$42955-03-3$	6.6	285
PI	$26023-21-2$	7.1	333
PP-BPA	-	13.9	209
PP-BPE	-	8.6	199
PP-BPT	-	9.3	191

${ }^{\text {a }}$ The $h_{\mathrm{c}, \text { exp }}$ values were obtained in this report ${ }^{[3]}$;
${ }^{\mathrm{b}}$ The $\mathrm{T}_{\mathrm{g}, \text { exp }}$ values were obtained in the SciFinder and ChemSpider databases.

2.5 Fire-safe performance

Figure S13. The results obtained from cone calorimeter test for BPA-PC and co-PCs with different chemical structure. (a) Smoke production rate (SPR) curves. (b) CO_{2} production rate $\left(\mathrm{CO}_{2} \mathrm{P}\right)$ curves.

Figure S14. Photographs for UL 94 5V testing using strip samples: (a) BPA-PC and (b) PPBPT.

Figure S15. Digital photographs of char residue after strip sample testing for BPA-PC and PP-BPT.

2.6 Transparency of PCs

Figure S16. UV-Vis spectra from the wavelength of 400 to 800 nm for BPA-PC and co-PCs with different chemical structure.

2.7 Morphology and microstructure of residual chars

Figure S17. Top-view photographs of the residual char after cone calorimeter test for BPAPC and co-PCs with different chemical structure.

Figure S18. Top-view photographs of the residual char after cone calorimeter test for BPAPC and co-PCs with different chemical structure.

Figure S19. Possible chain scission of BPA structural unit from PP-BPA, possible rearrangement of BPE structural unit from $\mathrm{PP}-\mathrm{BPE}$ and the crosslinking behavior of BPT structural unit from PP-BPT.

Figure S20. The SEM images of the external residual char for BPA-PC and PP-BPA.

Figure S21. High-resolution SEM image for the particle morphology on the surface of external residual char from PP-BPT.

Figure S22. The SEM images of the internal residual char for BPA-PC and co-PCs with different chemical structure.

2.8 Pyrolysis analysis

Figure S23. Chromatogram profile of BPA-PC obtained from Py-GC-MS test.

Figure S24. Chromatogram profile of PP-PC obtained from Py-GC-MS test.

Figure S25. Chromatogram profile of PP-BPA obtained from Py-GC-MS test.

Figure S26. Chromatogram profile of PP-BPE obtained from Py-GC-MS test.

Figure S27. Chromatogram profile of PP-BPT obtained from Py-GC-MS test.

Table S8. Compounds detected by the Py-GC-MS test from the decomposition of BPA-PC, PP-PC and co-PCs with different chemical structure at $550^{\circ} \mathrm{C}$

Sample Peak\# | Rentention |
| :---: |
| time | (M)

	2	4.25	108		82,108
	3	5.79	94		94, 66
	4	10.58	110		81, 110
	5	15.58	186		157, 186
	6	16.84	196		168, 196
	7	17.82	208		$\begin{gathered} 152,180 \\ 208 \end{gathered}$
	1	1.92	44	CO_{2}	44
	2	5.97	94		94, 66
	3	10.36	152		152
	4	15.63	186		186
PP-BPT	5	15.92	200		168, 200
	6	16.53	218		185, 218
	7	16.81	196		168, 196
	8	17.43	218		186,218
	9	17.83	208		$\begin{gathered} 152,180 \\ 208 \end{gathered}$

Figure S28. Relative peak area of low molecular weight pyrolysis products of PC in the gas chromatogram.

Figure S29. (a) Possible pyrolysis processes of BPT structural unit. (b) Possible pyrolysis processes of BPT-PC.

3. References

[1] D. W. Van Krevelen and K. Te Nijenhuis, Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. Elsevier. 2009.
[2] R. E. Lyon, Fire Mater, 2000, 24, 179-186.
[3] R. N. Walters and R. E. Lyon, J. Appl. Polym. Sci., 2003, 87, 548-563.
[4] R. E. Lyon, M. T. Takemori, N. Safronava, S. I. Stoliarov and R. N. Walters, Polymer, 2009, 50, 2608-2617.

