Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information (ESI)

Electrochemical Properties of a Titanium-Substituted KVPO₄F Cathode for K-Ion Batteries

Xiaoran Yang,^a Danna Yan,^a Tsengming Chou,^a and Jae Chul Kim^{a,*}

^aDepartment of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ, 07030, USA

Figure S1. Lattice parameters of $KTi_{1-x}V_xPO_4F$ obtained by Rietveld refinement.

Figure S2. SEM image of as-synthesized $KV_{0.5}Ti_{0.5}PO_4F$

Figure S3. Voltage vs. capacity curves for (a) micron-sized (pristine) and (b) nano-sized (ballmilled) KV_{0.5}Ti_{0.5}PO₄F at C/10 for 10 cycles

Figure S4. XRD patterns of $KV_{0.5}Ti_{0.5}PO_4F$ before and after carbon coating

Figure S5. Discharge rate capability of KVPO₄F/C at (a) 25°C and (b) 35°C. The cells were charged at C/10 after each discharge.

Figure S6. SEM images of (a) as-synthesized and (b) carbon-coated $KVPO_4F$

Figure S7. Voltage profile (10 cycles) of KTiPO₄F/C at C/10

Figure S8. XRD pattern of as-synthesized KTiPO₄F

Figure S9. Voltage vs. capacity of $KVPO_4F/C$ at C/10 (the second cycle)

Figure S10. CV of KVPO₄F/C at different scan rates

Figure S11. The voltage vs. capacity curves of (a) KVPO₄F and (b) KTiPO₄F at C/10 for 30 cycles.

Figure S12. Calculated chemical diffusion coefficients of KTi_{0.5}V_{0.5}PO₄F/C and KTi_{0.5}V_{0.5}PO₄F upon (a) charge and (d) discharge.

Figure S13. Calculated chemical diffusion coefficients of KTi_{0.5}V_{0.5}PO₄F/C and KTi_{0.5}V_{0.5}PO₄F upon (a) charge and (d) discharge.

Figure S14. Nyquist plots for two K metal half cells with the carbon-coated and pristine $KTi_{0.5}V_{0.5}PO_4F$ cathodes (after one C/5 cycle).

Table S1. Cr	ystallographic o	lata obtained from	Rietveld refineme	nt for KTi _{0.5} V _{0.5} PO ₄ F.
--------------	------------------	--------------------	--------------------------	---

Formula	KTi _{0.5} V _{0.5} PO ₄ F
Space group	Pna21
<i>a</i> , Å	12.8911
<i>b</i> , Å	6.411
<i>c</i> , Å	10.665
<i>V</i> , Å ³	881.4067
Radiation	X-rays, Cu-K _{α} , λ_1 = 1.540598 Å, λ_2 = 1.54433 Å
Two theta range, step, deg.	10–75, 0.01
<i>R</i> _{<i>E</i>} , %	0.71987
$R_p, R_{wp}, \%$	8.02992, 12.55658

Atom	Wycoff	Atomic position			Occupancy
	position	X	У	Z	Occupancy
K0	4a	0.10325	0.70147	0.06001	1
K1	4a	0.12164	0.27556	0.80093	1
V2	4a	0.11553	0.99470	0.50315	0.5
V3	4a	0.24666	0.24953	0.25214	0.5
Ti2	4a	0.11553	0.99470	0.50315	0.5
Ti3	4a	0.24666	0.24953	0.25214	0.5
P4	4a	0.00124	0.83393	0.75416	1
P5	4a	0.18045	0.49762	0.50419	1
O6	4a	0.01019	0.02722	0.37057	1
07	4a	0.01634	0.98539	0.64401	1
08	4a	0.09415	0.30214	0.23167	1
O9	4a	0.09759	0.69671	0.77284	1
O10	4a	0.11115	0.30836	0.53029	1
O11	4a	0.11218	0.68635	0.47816	1
O12	4a	0.24673	0.95382	0.89279	1
O13	4a	0.24907	0.03340	0.11931	1
F14	4a	0.23030	0.98003	0.62994	1
F15	4a	0.23099	0.02362	0.38101	1

Note that the reference structure for Rietveld refinement was obtained from computation that assumes equal population of K over the two K sites and equal population of transition metals over the two transition metal sites per formula unit. The difference between observed and calculated peak intensities in Figure 1 in the manuscript implies that K, Ti, and V in synthesized $KTi_{0.5}V_{0.5}PO_4F$ may have different site occupancies from the reference structure.