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S1. Data distribution

To train the ML models, data sets for both ∆GH and stability prediction were randomly 

split as training and testing sets according to a 7:3 ratio. For ∆GH prediction model, as shown in 

Fig. S1a, ∆GH distributions of the training and testing set have similar shapes, with data distributed 

in the range of (-0.5, 2.5) eV. Fig. S2a shows the distribution of data for stability prediction. 

Similarly, it is found that stability data are evenly distributed in both the training and testing set. 

The good distribution of data for both ∆GH and stability prediction ensures the accuracy of the ML 

training process.

We also evaluated the distribution of alloy types for data sets from ∆GH and stability 

prediction, as shown in Fig. S1b and Fig. S2b. The distribution plots suggest that the data we used 

for training ML are evenly distributed in different alloy types and can appropriately represent all 

2D TMDC alloys.
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Fig. S1 a. The normalized distribution of the DFT-calculated ΔGH for the training and testing set, 

respectively. b. The distribution of alloy types for the training and testing set for ΔGH prediction. 

Fig. S2 a. The distribution of stability of alloys for the training and testing set. b. The distribution of alloy 

types for the training and testing set for stability prediction.



S2. Performance of ML model

To evaluate the performance of our ML models, in this study, we used mean absolute error 

(MAE) and root-mean-square error (RMSE) to measure the errors of the regression model, and 

accuracy and F1-score to measure the errors of the classification model. 

MAE is defined as the sum of absolute values divided by the number of data:
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where N, y and yi represent the number of data, observed value and predicted value.

RMSE is the standard deviation of the predicted errors calculated as:
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Accuracy is the fraction of correct predictions:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
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And F1-score is defined as the harmonic mean of precision and recall:

𝐹1 =
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𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
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where precision is the number of the true positives over the number of predicted positives, and 

recall is the number of true positives over the number of actual positives.

In this work, we used regression to predict ΔGH and classification to predict the stability 

of the 2D TMDC alloys. 10-fold cross-validation was used when evaluating the ML models. The 

corresponding learning curves of these two models are presented in Fig. S3, which show the 

magnitude of the modeling error as the size of dataset varies. The convergence of the training and 

validation scores indicates that we have enough data used for training.



Fig. S3. Error metrics vs. size of dataset for the prediction of a. ΔGH and b. stability of 2D TMDC alloys. 



S3. Gibbs free energies of hydrogen adsorption on pristine MX2

Table S1. Gibbs free energies of hydrogen adsorption on pristine MX2

MS2 ΔGH-MS2 (eV) MSe2 ΔGH-MSe2 (eV)

CrS2 1.37 CrSe2 1.39

MoS2 2.00 MoSe2 2.16

WS2 2.25 WSe2 2.28

VS2 0.28 VSe2 0.69

NbS2 -0.01 NbSe2 0.36

TaS2 0.17 TaSe2 0.46

TiS2 0.04 TiSe2 0.48

ZrS2 0.126 ZrSe2 0.540

HfS2 0.347 HfSe2 0.671



S4. Feature vector assignment

Fig. S4 illustrates how a feature vector is assigned to each unique alloy structure. Here, we 

use Mo0.89W0.11S2 as a representative. Transition metal sites in the supercell are numbered and 

each site is described in order by the following three properties: the atomic number of the element 

(Z), the Pauling electronegativity of the element (χ), and the Gibbs free energy of hydrogen 

adsorption of pristine MX2 (ΔGH-MX2) for ΔGH prediction or total energy of pristine MX2 (EMX2) 

for stability prediction. After describing all transition metal sites, Z and χ of the chalcogen atom 

are appended at the end of the feature vector. A 29-dimension vector is created and can represent 

each alloy configuration in our study.

Fig. S4. Illustration of feature vector assignment. Alloy structures are reduced to numerical representations.



S5. Electrocatalytic Activity of 72 TMDC Alloys

Fig. S5-10 show the machine learning predicted ΔGH values for various TMDC ternary 

alloys at different concentrations.

Fig. S5. Machine learning predicted ΔGH values of TMDC ternary alloys at different concentrations. Black 

dash lines indicate the optimal ΔGH desirable for HER.



Fig. S6. Machine learning predicted ΔGH values of TMDC ternary alloys at different concentrations. Black 

dash lines indicate the optimal ΔGH desirable for HER.



Fig. S7. Machine learning predicted ΔGH values of TMDC ternary alloys at different concentrations. Black 

dash lines indicate the optimal ΔGH desirable for HER.



Fig. S8. Machine learning predicted ΔGH values of TMDC ternary alloys at different concentrations. Black 

dash lines indicate the optimal ΔGH desirable for HER.



Fig. S9. Machine learning predicted ΔGH values of TMDC ternary alloys at different concentrations. Black 

dash lines indicate the optimal ΔGH desirable for HER.



Fig. S10. Machine learning predicted ΔGH values of TMDC ternary alloys at different concentrations. Black 

dash lines indicate the optimal ΔGH desirable for HER.



S6. HER activity mapping for MSe2

Fig. S11 HER activity heatmaps for MSe2 alloys showing a. the fraction of adsorption sites of ΔGH within 

the optimal range of (-0.1, 0.1) eV for each alloy, and b. the fraction of adsorption sites that are stable and 

have optimal ΔGH for each MSe2 alloy. The number indicates the fraction value an alloy exhibits, which is 

also reflected by the color. 



S7. HER activity mapping for MS2 at different concentrations

Fig. S12 HER activity heatmap for MS2 alloys showing the fraction of adsorption sites that are stable and 

have optimal ΔGH for each alloy at different concentrations. The number indicates the fraction value an 

alloy exhibits, which is also reflected by the color. 



S8. The effect of configuration changes

Fig. S13 Relationship between εp values and ΔGH for W(1-x)VxSe2 alloys with different configurations.



S9. p-band center εp vs. concentration x of TMDC alloys

Fig. S14 p-band center εp vs. concentration x plots for all adsorption sites in Mo(1-x)VxS2 and W(1-x)VxSe2. 

Green solid points here highlight the adsorption sites with the best (lowest) ΔGH at each concentration. 



S10. Charge transfer induced p-band center change ΔεCEX vs. concentration x of TMDC 

alloys

Fig. S15 The change of p-band center during the charge transfer step ΔεCEX of the adsorption sites 

in Mo(1-x)VxS2 and W(1-x)VxSe2 alloys with the best (lowest) ΔGH as a function of the composition 

x.



S11. Example adsorption configurations

Fig. S16. Example hydrogen adsorption configurations on six representative TMDC alloys, where S 

atoms, Se atoms and H atoms are colored yellow, green, and pink respectively.


