ELECTRONIC SUPPLEMENTARY INFORMATION

Solution-processed In₂Se₃ nanosheets for ultrasensitive and highly selective NO₂ gas sensors

Gianluca D'Olimpio^{1,§}, Vardan Galstyan^{2,3§}, Corneliu Ghica⁴, Mykhailo Vorokhta^{5,} Marian Cosmin Istrate⁴, Chia-Nung Kuo^{6,7}, Chin Shan Lue^{6,7}, Danil W. Boukhvalov^{8,9,*}, Elisabetta Comini^{2,*}, Antonio Politano^{1,*}

¹ Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio, 67100 L'Aquila (AQ), Italy

² Sensor Lab, Department of Information Engineering, University of Brescia, Via Valotti 9, 25133 Brescia, Italy

³ Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via Vivarelli 10, 41125 Modena, Italy

⁴ National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania

⁵ Charles University, V Holesovickăch 2, Prague 8, 18000 Prague, Czech Republic

⁶ Department of Physics, National Cheng Kung University, 1 Ta-Hsueh Road, 70101 Tainan, Taiwan

⁷ Taiwan Consortium of Emergent Crystalline Materials, National Science and Technology Council, Taipei 10601, Taiwan

⁸ College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, P. R. China

⁹ Institute of Physics and Technology, Ural Federal University, Mira 19 Str., Yekaterinburg 620002, Russia

S1. Gas sensing measurements

Figure S1. (a) Electrical conductance dependence of In_2Se_3 on the relative humidity (RH) concentration at an operating temperature of 300 °C. (b) Calibration curve of the normalized sensing response ($\Delta G/G0$) of α -In₂Se₃ towards NO₂ at an operating temperature of 300 °C and RH of 40%. The response value for the pristine structure was set to 1 to estimate the limit of detection (LOD), which was found to be approximately 5 ppb for α -In₂Se₃.

Table S1. Gas sensing parameters of In_2Se_3 towards different concentrations of NO_2 at an operating temperature of 300 °C.

Concentration (ppm)	Response
0.2	9.8
0.5	18.4
1	27.3
2	42.6
5	77.0

Figure S2. The response of α -In₂Se₃ towards 0.5, 1, 2, and 5 ppm of NO₂ at its optimum operating temperature (300 °C). The results were obtained after the first-time measurements and two months later.

Figure S3. The conductance vs time dependence of α -In₂Se₃ at 300 °C. The conductance values were registered after the gas test of the material to each concentration of NO₂ (0.2, 0.5, 1, 2, and 5 ppm) and its recovery in air (please see Figure 5b in the paper). The gas test for each concentration of NO₂ lasts 2 h.

Figure S4. SEM image of Pt interdigitated electrodes deposited on the Al_2O_3 substrate.

S2. Literature comparison

Table S2. Comparison of gas sensing properties of α -In₂Se₃ with sensing structures comprising 2D semiconductors and metal-oxide nanostructures. V_a denotes the output voltage of the sensor in air, while V_g represents the output voltage under exposure to NO₂.

Material	NO ₂	Response	Operating	Estimated
	concentration	$[(R_{f} R_{0})/R_{0}]$	temperature	LOD
	(ppm)		(°C)	(ppb)
SnS ₂ ¹	5	2.5	200	_
Sb ₂ Se ₃ ²	2	$0.8, (R_a - R_g)/R_a$	140	60
N-doped In ₂ S ₃ ³	10	$0.1, (R_a - R_g)/R_a$	RT	_
SnO ₂ /SnSe _{1.7} ⁴	1	2.2	150	360
In ₂ O ₃ /SnS ₂ ⁵	50	15,* V _g /V _a	25	—
In ₂ S ₃ /In ₂ O ₃ ⁶	1	24	160	
SnO ₂ /SnS ₂ ⁷	3	$15.33, R_a/R_g$	60	37
SnSe ₂ /SnO/SnSe ⁸	5	2.6	RT	115
reduced graphene	1	0.6,§	450	50
oxide ⁹		$(G_{f}-G_{0})/G_{0}$		
Black phosphorus	25	0.2	RT	_
Al-Black phosphorus	1	0.1	70	-

10				
reduced graphene	10	0.1	RT	—
oxide/MoS ₂ ¹¹				
C/g-C ₃ N ₄ ¹²	50	0.7	200	7390
In ₂ O ₃ nanoparticles ¹³	1.2	$0.1, R_{a}/R_{g}$	300	_
In ₂ O ₃ nanoparticles ¹⁴	40	$6, R_a/R_g$	225	_
In ₂ O ₃	5	24	300	_
nanoparticles/SnO ₂				
nanowires ¹⁵				
SnO ₂ nanowires ¹⁵	5	2.3	300	_
α -In ₂ Se ₃ (this work)	1	27.3	300	5

* Room temperature

 G_0 is the baseline conductance value of the sensor in air, and G_f is the steady state conductance value of the sensor in presence of NO₂.

S3. O-1s core level measured by XPS

Figure S5. *O-1s core level for the as-cleaved surface of* α *-In*₂Se₃ *and for its modification after an exposure of* 10^{10} *L of* O_2 *and* H_2O *at room temperature.*

Table S3. Differential enthalpy and Gibbs free energies at 400 °C for the surface of bulk/monolayer of β -In₂Se₃ with and without Se-vacancies. Negative values indicate exothermic processes, while positive values indicate endothermic processes.

Substrate	Analyte	ΔH , kJ/mol	ΔG (400 °C), kJ/mol
	O ₂	-133.2 / +26.3	-107.3 / +52.2
	H_2	-2.6 / -70.4	+16.1 / -51.7
	H ₂ O	-296.7 / -61.3	-226.0 / +9.4
	СО	-237.9 / -75.6	-205.6 / -43.3
	CO_2	-289.6 / -78.2	-253.3 / -41.9
β-In ₂ Se ₃	NO ₂	-270.2 / -83.4	-214.9 / -8.7
	NO ₂ +H ₂ O	+18.7 / -3.8	+93.4 / +70.9
	Ethanol	-306.5 / -95.4	-251.0 / -39.9
	Acetone	-289.7 / -84.1	-216.3 / -10.7
	NH ₃	-314.8 / -100.8	-250.9 / -36.9
	H_2S	-302.9 / -86.7	-244.3 / -28.1
β-In ₂ Se _{2.97}	O ₂	-4.9 / -56.0	+21.0 / -30.1
	H_2	-17.3 / -8.3	+1.4 / +10.4
	H ₂ O	-255.9 / -48.2	-185.2 / +22.5
	CO	-53.7 / -37.5	-21.4 / -5.2
	CO_2	-214.0 / -24.3	-177.7 / +12.0
	NO_2	-67.9 / -193.3	+6.8 / -118.6
	Ethanol	-284.8 / -97.0	-229.3 / -41.5
	Acetone	-282.5 / -103.2	-218.4 / -29.8
	NH ₃	-291.8 / -84.1	-227.9 / -20.2
	H_2S	-249.4 / -60.2	-190.8 / -1.6

References

- 1. M. Cheng, Z. Wu, G. Liu, L. Zhao, Y. Gao, B. Zhang, F. Liu, X. Yan, X. Liang, P. Sun and G. Lu, *Sens.* Actuators B Chem., 2019, **291**, 216-225.
- 2. Y. B. Kim, S. H. Jung, D. S. Kim, N. G. Deshpande, H. W. Suh, H. H. Lee, J. H. Choi, H. S. Lee and H. K. Cho, *Adv. Funct. Mater.*, 2021, **31**, 2102439.
- 3. Y. Cheng, Z. Li, T. Tang, K. Xu, H. Yu, X. Tao, C. M. Hung, N. D. Hoa, Y. Fang, B. Ren, H. Chen and J. Z. Ou, *Applied Materials Today*, 2022, **26**, 101355.
- 4. V. Paolucci, G. D'Olimpio, C.-N. Kuo, C. S. Lue, D. W. Boukhvalov, C. Cantalini and A. Politano, 2020.
- 5. Y. Yang, D. Zhang, D. Wang, Z. Xu and J. Zhang, *J. Mater. Chem. A*, 2021, **9**, 14495-14506.
- 6. B.-R. Wang, L.-Y. Liu, G.-C. Guo, Y.-J. Bai, J.-C. Tu and R.-Z. Wang, *Appl. Surf. Sci.*, 2022, **584**, 152669.
- 7. H. Yang, C. Zhu, Q. Wu, X. Li, H. Wang, J. Wan, C. Xie and D. Zeng, *Appl. Surf. Sci.*, 2022, **601**, 154213.
- 8. S. Rani, M. Kumar, P. Garg, R. Parmar, A. Kumar, Y. Singh, V. Baloria, U. Deshpande and V. N. Singh, *ACS Appl. Mater. Interfaces*, 2022, **14**, 15381-15390.
- 9. S. Cui, H. Pu, E. C. Mattson, Z. Wen, J. Chang, Y. Hou, C. J. Hirschmugl and J. Chen, *Anal. Chem.*, 2014, **86**, 7516-7522.
- 10. G. Lee, S. Kim, S. Jung, S. Jang and J. Kim, *Sens. Actuators B Chem.*, 2017, **250**, 569-573.
- 11. B. Han, Z. Duan, J. Xu, Y. Zhu, Q. Xu, H. Wang, H. Tai, J. Weng and Y. Zhao, *Adv. Funct. Mater.*, 2020, **30**, 2002232.
- 12. A. Govind, P. Bharathi, G. Mathankumar, M. K. Mohan, J. Archana, S. Harish and M. Navaneethan, *Diamond Relat. Mater.*, 2022, **128**, 109205.
- 13. P. Sowti khiabani, E. Marzbanrad, H. Hassani and B. Raissi, *J. Am. Ceram. Soc.*, 2013, **96**, 2493-2498.
- 14. S. Shah, S. Han, S. Hussain, G. Liu, T. Shi, A. Shaheen, Z. Xu, M. Wang and G. Qiao, *Ceram. Int.*, 2022, **48**, 12291-12298.
- 15. S. Park, Y. W. Jung, G. M. Ko, D. Y. Jeong and C. Lee, *Applied Physics A*, 2021, **127**, 898.