Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information (ESI)

Alloyed triple half-Heusler: a route toward high performance thermoelectrics with intrinsically low lattice thermal conductivity

Peng-Fei Luo,^{‡a} Shengnan Dai,^{‡b} Yuting Zhang,^a Xin Liu,^a Zhili Li,^a Jiye Zhang,^a Jiong

Yang,*^b Jun Luo,*^{ab}

^aSchool of Materials Science and Engineering, Shanghai University, Shanghai, 200444, PR China ^bMaterials Genome Institute, Shanghai University, Shanghai, 200444, PR China

‡ These authors contributed equally to this work.
*Corresponding authors: Jun Luo; Jiong Yang
E-mail: junluo@shu.edu.cn (J. Luo); jiongy@t.shu.edu.cn (J. Yang)

Supplementary section 1

Fig. S1 (a-c) XRD patterns of the Ti(Fe_{0.5+x}Co_{0.25}Cu_{0.25-x})Sb (x = 0.025, 0.05, and 0.075) samples together with their Rietveld refinement results.

Supplementary section 2

1.1 Single parabolic band model

Assuming the carrier conduction occurs within a single parabolic band (SPB),¹ we can obtain the following equations according to the Boltzmann transport theory:

The Seebeck coefficient,

$$S(\eta) = \pm \frac{k_B}{e} \left[\frac{(r+5/2)F_{(r+3/2)}(\eta)}{(r+3/2)F_{(r+1/2)}(\eta)} - \eta \right]$$
(1)

The Hall carrier concentration,

$$n_{H} = \frac{\left(2m^{*}k_{B}T\right)^{2} (r+3/2)F_{(r+1/2)}^{2}(\eta)}{3\pi^{2}\hbar^{3} (2r+3/2)F_{(2r+1/2)}(\eta)}$$
(2)

The Lorentz number,

$$L = \left(\frac{k_B}{e}\right)^2 \left\{\frac{(r+7/2)F_{(r+5/2)}(\eta)}{(r+3/2)F_{(r+3/2)}(\eta)} - \left[\frac{(r+5/2)F_{(r+3/2)}(\eta)}{(r+3/2)F_{(r+1/2)}(\eta)}\right]^2\right\}$$
(3)

The Fermi integral,

$$F_j(\eta) = \int_0^\infty \frac{\xi^j d\xi}{1 + exp^{[i0]}(\xi - \eta)}$$
(4)

Where $\eta = E_F/k_BT$ is the reduced Fermi level, ξ the reduced carrier energy, m^* the density of states (DOS) effective mass, \hbar the reduced Planck constant, and the scattering factor r relates to the energy dependence of the carrier relaxation time $\tau \operatorname{via} \tau = \tau_0 \varepsilon^r$. When the charge carriers are scattered by acoustic phonon, the parameter r is equal to - 1/2.

The drift mobility for acoustic phonon scattering can be expressed as²:

$$\mu_{ph} = \frac{\sqrt{2}e\pi\hbar^4 \quad \nu_L^2 \rho \quad F_0(\eta)}{3(k_B T)^{3/2} \Xi^2 (m_b^*)^{5/2} F_{1/2}(\eta)}$$
(5)

where $v_{\rm L}$ is the velocity of longitudinal waves, ρ the sample density, Ξ the deformation potential, and m_b^* the band effective mass.

Fig. S2 Temperature dependence of (a) calculated Lorentz number (*L*) and (b) electronic thermal conductivity (κ_e) for Ti(Fe_{0.5+x}Co_{0.25}Cu_{0.25-x})Sb (x = 0, 0.025, 0.05, and 0.075) samples.

Fig. S3 (a) The crystal structure of $Ti(Fe_{0.25}Fe_{0.25}^{4d}Co_{0.25}Cu_{0.25})Sb$. (b) The phonon dispersion of $Ti(Fe_{0.25}Fe_{0.25}^{4d}Co_{0.25}Cu_{0.25})Sb$.

1.2 Minimum lattice conductivity of Ti(Fe_{0.5+x}Co_{0.25}Ni_{0.25-x})Sb samples

According to the Cahill model,³ the minimum lattice thermal conductivity can be written as the following formula:

$$\kappa_{min} = \left(\frac{\pi}{6}\right)^{1/3} k_B n^{2/3} \sum_i \nu_i \left(\frac{T}{\theta_i}\right)^2 \int_0^{\theta_i/T} \frac{x^3 e^x}{(e^x - 1)^2} dx$$
(6)

Here, *n*, v_i and θ_i are the number density of atoms, the acoustic phonon velocity and the Debye temperature for each acoustic mode, respectively. Parameter θ_i can be obtained by the relationship $\theta_i = v_i (\hbar/k_{\rm B})(6\pi^2 n)^{1/3}$.

1.3 Elastic properties of Ti(Fe_{0.5+x}Co_{0.25}Ni_{0.25-x})Sb samples

Average sound velocity v_s can be extracted from:

$$\nu_{s} = \left[\frac{1}{3}\left(\frac{1}{\nu_{l}^{3}} + \frac{2}{\nu_{t}^{3}}\right)\right]^{-\frac{1}{3}}$$
(7)

where v_1 and v_t are the longitudinal and transverse sound velocity respectively, which have been obtained as described in the experimental details section.

Debye temperature θ_D is calculated by:

$$\theta_D = \frac{h}{k_B} \left[\frac{3NN_A \rho}{4\pi M} \right]^{\frac{1}{3}} v_s \tag{8}$$

where *h* is the Planck constant, $k_{\rm B}$ is the Boltzmann constant, *N* represents the number of atoms in the molecule, $N_{\rm A}$ is the Avogadro constant, ρ is the mass density, *M* represents the molecular weight of the sample, respectively.

The Poisson ratio (v_p) , shear modulus (G), bulk modulus (B) and Young's modulus (E) can be derived by the relationship as:

$$\nu_p = \frac{\nu_l^2 - 2\nu_t^2}{2(\nu_l^2 - \nu_t^2)}$$
(9)

$$\nu_p = \frac{\nu_l^2 - 2\nu_t^2}{2(\nu_l^2 - \nu_t^2)}$$
(10)

$$B = \frac{\rho(3v_l^2 - 4v_t^2)}{3}$$
(11)

$$E = \frac{\rho v_t^2 (3v_1^2 - 4v_t^2)}{(v_1^2 - v_t^2)}$$
(12)

Table S1. Room-temperature transverse sound velocities (v_t), longitudinal sound velocities (v_l), average sound velocities (v_s), Poisson ratio (v_p), shear modulus (G), bulk modulus (B), Young's moduli (E), and mass densities (ρ) for Ti(Fe_{0.5+x}Co_{0.25}Ni_{0.25-x})Sb (x= 0, 0.025, 0.05, 0.075) samples.

	<i>v</i> _t	vl	V _s	Poisson	Shear	Bulk	Young's	ρ
Samples	(m·s ⁻¹)	(m ·s ⁻¹)	(m·s ⁻¹)	ratio	modulus	modulus	modulus	(g·cm ⁻³)
_					(GPa)	(GPa)	(GPa)	
x=0.000	3087	5712	3445	0.294	69	144	178	7.21
<i>x</i> =0.025	3059	5367	3400	0.259	67	178	170	7.21
<i>x</i> =0.050	3004	5328	3342	0.267	66	120	167	7.32
<i>x</i> =0.075	2974	5322	3310	0.273	64	119	162	7.21

1.4 Low-temperature heat capacity fitting

Table S2. Parameters used to fit the low temperature heat capacity (C_p) of Ti(Fe_{0.5}Co_{0.25}Cu_{0.25})Sb by using one Debye and one Einstein mode.

	Fitting parameters	Values
	δ (10 ⁻³ J mol ⁻¹ K ⁻²)	1.4
	β (10 ⁻⁵ J mol ⁻¹ K ⁻⁴)	6.26
	$A (\text{J mol}^{-1} \text{ K}^{-1})$	10.17
	$\Theta_{\mathrm{E}}\left(\mathrm{K} ight)$	146
	<i>ω/ν</i> (THz)	19.2/3.06
a	4 Experimental data Fitting curve C 2 C 1	b 0.12 Fitting curve

Fig. S4 Heat capacity fitting for the Ti(Fe_{0.5}Co_{0.25}Cu_{0.25})Sb sample from 7 K to 30 K. (a)-(d) C_p versus T^3 , C_p/T versus T^2 , C_p/T^2 versus T, and C_p/T^2 versus T for Ti(Fe_{0.5}Co_{0.25}Cu_{0.25})Sb by using one Debye mode plus one Einstein mode from 7 K to 30 K.

1.5 Lattice thermal conductivity modeling

We modeled the lattice thermal conductivity based on the Debye-Callaway approximation.^{4, 5} In this model, the lattice thermal conductivity can be written as

$$\kappa_L = \frac{k_B}{2\pi^2 \nu_s} \left(\frac{k_B}{\hbar}\right)^3 T^3 \int_0^{\theta_D/T} \tau_C \frac{x^4 e^x}{(e^x - 1)^2} dx \tag{13}$$

The phonon relaxation rate τ_C^{-1} can be determined by combining various scattering processes:

$$\tau_{C}^{-1} = \tau_{B}^{-1} + \tau_{PD}^{-1} + \tau_{U}^{-1} + \tau_{EP}^{-1}$$
(14)

where τ_B , τ_{PD} , τ_U , and τ_{EP} are relaxation times for boundary scattering, point defect scattering, Umklapp process, and electron-phonon (*EP*) scattering, respectively. The boundary scattering rate is temperature and frequency independent and can be represented by

$$\tau_B^{-1} = \frac{\nu_s}{L} \tag{15}$$

where L is the average grain size. The point defect scattering rate is frequency dependent, having a strong frequency dependence

$$\tau_{PD}^{-1} = A\omega^4 \tag{16}$$

where A is a material dependent point defect prefector. Umklapp processes are characterized by a relaxation rate proposed by Glassbrenner and Slack (GS)⁶ with

$$\tau_{U}^{-1} = B\omega^{2}Te^{-\theta_{D}/3T}$$
(17)

where *B* is the Umklapp prefactor. The electron-phonon scattering rate is frequency dependent, having a frequency dependence

$$\tau_{EP}^{-1} = C\omega^2 \tag{18}$$

where C is the electron-phonon scattering prefactor.

Fitting parameters	Values
<i>L</i> (μm)	0.66
$A (10^{-42} \text{ s}^{-3})$	8.45
<i>B</i> (10 ⁻¹⁸ s K ⁻¹)	1.21
$C (10^{-18} \text{ s})$	1.15
$v_{\rm s} ({\rm m} {\rm s}^{-1})$	3445
$\Theta_{\mathrm{D}}\left(\mathrm{K} ight)$	395

Table S3. Fitting parameters for the lattice thermal conductivity of $Ti(Fe_{0.5}Co_{0.25}Cu_{0.25})Sb$.

Supplementary section 3

Fig. S5 Hall carrier concentrations of $Ti(Fe_{0.5+x}Co_{0.25}Cu_{0.25-x})Sb$ (x = 0, 0.025, 0.05, and 0.075) samples as a function of temperature. The almost temperature independent carrier concentration indicates a heavily doped semiconductor character of these samples.

References

- 1 A. F. May, E. S. Toberer, A. Saramat and G. J. Snyder, *Phys. Rev. B*, 2009, **80**, 125205.
- 2 C. Fu, T. Zhu, Y. Pei, H. Xie, H. Wang, G. J. Snyder, Y. Liu, Y. Liu and X. Zhao, *Adv. Energy Mater.*, 2014, **4**, 1400600.
- 3 D. G. Cahill, S. K. Watson and R. O. Pohl, *Phys. Rev. B*, 1992, **46**, 6131-6140.
- 4 J. Callaway, *Phys. Rev.*, 1959, **113**, 1046-1051.
- 5 J. Callaway and H. C. von Baeyer, *Phys. Rev.*, 1960, **120**, 1149-1154.
- 6 C. J. Glassbrenner and G. A. Slack, *Phys. Rev.*, 1964, **134**, A1058-A1069.