Supporting information for

High solar-to-hydrogen efficiency in the novel derivatives of

group-III trichalcogenides for photocatalytic water splitting: the

effect of elemental composition

Hao Ma^a, Wen Zhao^{a, *}, Saifei Yuan^a, Hao Ren^a, Houyu Zhu^a, Yuhua Chi^a, Wenyue Guo^{a, *}

^a School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China

* Corresponding author.

E-mail addresses: <u>zhaowen@upc.edu.cn</u> (Wen Zhao) and <u>wyguo@upc.edu.cn</u> (Wenyue Guo)

Table S1 Calculated lattice parameters (a=b), total heights (h), interlayer distances between the two Group-III metal layers (l), formation energies (E_{form}) , band types, band gaps at the HSE level (E_g^{HSE}) and the PBE level (E_g^{PBE}) , differences of electrostatic potential between the two surfaces $(\Delta \phi)$, overpotentials for the hydrogen evolution reaction $\chi(H_2)$ and for the oxygen evolution reaction $\chi(O_2)$ of the MNX₃ (M, N = In/Ga/Al; X = S/Se/Te) monolayers, including α and β phases.

Materials MNX ₃	a = b (Å)	<i>h</i> (Å)	<i>l</i> (Å)	<i>E_{form}</i> (eV/atom)	Band type	$ \begin{array}{c} E_g^{HSE} \\ (eV) \end{array} $	$\begin{array}{c} E_g^{PBE} \\ (eV) \end{array}$	ΔØ (eV)	$\begin{array}{c} \chi(\mathrm{H}_2) \\ (\mathrm{eV}) \end{array}$	$\chi(0_2)$ (eV)
InGaS ₃ -a	3.81	6.09	3.86	-0.75	I	1.71	0.95	1.77	0.23	2.01
InGaS ₃ -β	3.77	6.25	3.91	-0.66	I	2.47	1.62	1.43	0.62	2.05
InGaSe ₃ -a	3.99	6.50	4.06	-0.74	I	1.07	0.43	1.42	0.02	1.23
InGaSe ₃ -β	3.95	6.64	4.10	-0.66	I	1.78	1.07	1.21	0.52	1.23
InGaTe ₃ -α	4.28	7.10	4.39	-0.47	I	0.68	0.17	1.02	0.28	0.19
InGaTe₃-β	4.26	7.23	4.44	-0.41	I	1.19	0.31	0.82	0.64	0.14
InAlS ₃ -a	3.79	6.06	3.86	-0.90	D	2.35	1.06	2.07	1.25	1.94
InAlS ₃ -β	3.72	6.25	3.89	-0.86	I	2.72	1.42	1.87	0.85	2.51
InAlSe ₃ -a	3.97	6.47	4.06	-0.83	D	1.67	0.58	1.58	0.81	1.21
InAlSe3-β	3.91	6.62	4.07	-0.81	I	2.12	1.13	1.62	0.86	1.65
InAlTe ₃ -a	4.27	7.10	4.40	-0.49	I	1.18	0.41	1.13	0.88	0.21
InAlTe ₃ -β	4.24	7.19	4.38	-0.49	I	1.56	0.84	1.21	0.96	0.57
GaAlS ₃ -α	3.63	5.88	3.73	-0.93	I	2.62	1.62	1.87	1.33	1.92
GaAlS ₃ -β	3.61	5.89	3.71	-0.99	Ι	2.80	1.49	2.20	1.39	2.37
GaAlSe ₃ -a	3.83	6.30	3.94	-0.81	I	1.84	1.08	1.44	1.00	1.05
GaAlSe ₃ - <i>β</i>	3.81	6.28	3.90	-0.88	I	1.90	0.82	1.82	0.99	1.50
GaAlTe ₃ -a	4.15	6.92	4.30	-0.44	I	0.71	0.24	0.97	0.47	-0.02
GaAITe ₃ -B	4.13	6.87	4.23	-0.51	I	1.24	0.48	1.30	0.92	0.39

Table S2 Calculated lattice parameters (a=b), total heights (h), interlayer distances between the two Group-III metal layers (l), formation energies (E_{form}), band types, band gaps at the HSE level (E_g^{HSE}) and the PBE level (E_g^{PBE}), differences of electrostatic potential between the two surfaces ($\Delta \phi$), overpotentials for the hydrogen evolution reaction χ (H₂) and the oxygen evolution reaction χ (O₂) of the InGaXY₂ (X, Y = S/Se/Te) monolayer, including α and β phases (here, the most stable configurations are highlighted with blue font, and a material with a bandgap below 0.4 eV is typically classified as a metal).

Materials	Туре	$\begin{array}{c} \boldsymbol{a} = \boldsymbol{b} \\ (\text{\AA}) \end{array}$	<i>h</i> (Å)	1 (Å)	<i>E_{form}</i> (eV/atom)	Band type	$\begin{array}{c} E_g^{HSE} \\ (eV) \end{array}$	$\begin{array}{c} E_g^{PBE} \\ (eV) \end{array}$	ΔØ (eV)	χ(H ₂) (eV)	$\chi(0_2)$ (eV)
InGaSSe2-a	Ι	3.92	6.43	4.09	-0.69	I	0.64	0.07	1.35	-0.29	1.05
	II	3.93	6.41	4.09	-0.71	I	1.47	0.72	1.74	0.27	1.71
	III	3.95	6.32	3.84	-0.74	D	1.09	0.48	1.59	0.27	1.18
InGaSSe ₂ -β	I	3.89	6.55	4.12	-0.64	I	1.61	0.92	1.02	0.26	1.14
	II	3.87	6.59	4.13	-0.61	Ι	1.84	1.07	1.50	0.50	1.61
	III	3.91	6.48	3.90	-0.63	I	2.13	1.41	1.30	0.72	1.48
InGaSeS2-a	I	3.89	6.21	3.86	-0.74	I	1.98	1.22	1.91	0.54	2.12
	II	3.97	6.37	3.81	-0.52	М	-	-	0.61	-	-
	III	3.86	6.33	4.11	-0.69	Ι	1.15	0.40	1.64	-0.05	1.61
InGaSeS₂-β	Ι	3.82	6.41	3.91	-0.62	I	2.47	1.63	1.64	0.79	2.09
	II	3.84	6.37	3.91	-0.64	I	1.93	1.22	1.15	0.48	1.36
	III	3.82	6.48	4.14	-0.62	I	1.76	0.99	1.29	0.30	1.52
InGaSTe ₂ -a	I	4.11	6.91	4.47	-0.43	М	-	-	0.40	-	-
	II	4.13	6.85	4.44	-0.48	D	0.94	0.31	1.71	0.72	0.70
	III	4.19	6.53	3.78	-0.55	D	0.94	0.42	1.21	0.78	0.14
InGaSTe ₂ -β	I	4.09	6.97	4.48	-0.44	М	0.38	0	0.45	-	144). 1
	II	4.09	7.04	4.47	-0.36	Ι	0.53	0	1.62	0.11	0.81
	III	4.16	6.69	3.86	-0.42	I	1.38	0.84	0.92	0.60	0.47
InGaTeS2-a	I	4.02	6.29	3.82	-0.63	I	2.52	1.82	2.03	1.27	2.04
	II	3.97	6.36	3.81	-0.58	М	-	-	0.60	-	-
	III	3.94	6.69	4.58	-0.53	М	-	-	1.18	-	-
InGaTeS2- <i>β</i>	Ι	3.95	6.53	3.88	-0.45	D	1.31	0.56	1.89	0.80	1.17
	II	3.97	6.46	3.89	-0.52	D	0.67	0.13	0.68	0.22	-0.10
	III	3.88	6.87	4.59	-0.48	М	-	-	0.93	-	-
InGaSeTe2-a	Ι	4.17	7.00	4.44	-0.48	М	-	-	0.77	-	-
	II	4.21	6.94		-0.52	Ι	0.99	0.40	1.45	0.52	0.69
	Ш	4.23	6.74	4.00	-0.55	D	0.86	0.36	1.16	0.56	0.23
InGaSeTe ₂ -β	I	4.15	7.09	4.46	-0.47	I	0.66	0.18	0.56	0.03	-0.04
	II	4.13	7.15	4.45	-0.42	Ι	0.90	0.32	1.33	0.36	0.64
	III	4.21	6.89	4.07	-0.46	Ι	1.33	0.78	0.88	0.49	0.49
InGaTeSe2-a	I	4.12	6.60	4.03	-0.64	I	1.98	1.28	1.64	1.00	1.39
	II	4.10	6.65	4.02	-0.60	М	-	-	1.01	-	-
	III	4.07	6.87	4.49	-0.57	М	-	-	1.16	-	-
InGaTeSe2-β	Ι	4.08	6.80	4.08	-0.51	D	1.51	0.81	1.44	0.56	1.16
	п	4.08	6.76	4.09	-0.56	I	1.10	0.57	0.69	0.34	0.22
	III	4.03	7.0	4.48	-0.53	D	0.76	0.19	1.01	0.17	0.37

Table S3 Calculated lattice parameters (a=b), total heights (h), interlayer distances between the two Group-III metal layers (l), formation energies (E_{form}), band types, band gaps at the HSE level (E_g^{HSE}) and the PBE level (E_g^{PBE}), differences of electrostatic potential between the two surfaces ($\Delta \phi$), overpotentials for the hydrogen evolution reaction χ (H₂) and the oxygen evolution reaction χ (O₂) of the InAlXY₂ (X, Y = S/Se/Te) monolayers, including α and β phases (here, the most stable configurations are highlighted with blue font, and a material with a bandgap below 0.4 eV is typically classified as a metal).

Materials	Туре	a = b (Å)	<i>h</i> (Å)	<i>l</i> (Å)	<i>E_{form}</i> (eV/atom)	Band type	E_g^{HSE} (eV)	E_g^{PBE} (eV)	Ư (eV)	χ(H ₂) (eV)	$\chi(0_2)$ (eV)
InAlSSe2-a	I	3.89	6.38	4.08	-0.84	D	1.27	0.61	1.71	0.75	0.99
	П	3.75	6.37	4.07	-0.82	I	2.14	1.31	1.86	1.03	1.73
	III	3.78	6.26	3.82	-0.87	D	1.81	1.12	1.62	1.06	1.14
InAlSSe2-β	I	3.86	6.50	4.08	-0.82	I	1.88	1.18	1.46	0.52	1.58
	II	3.73	6.54	4.09	-0.82	I	2.40	1.60	1.80	0.97	2.00
	III	3.75	6.44	3.85	-0.82	Ι	2.18	1.52	1.86	1.04	1.77
InAlSeS2-a	I	3.87	6.16	3.84	-0.87	Ι	2.73	1.92	1.92	1.32	2.10
	п	3.70	6.17	3.84	-0.89	D	1.37	0.70	1.77	1.01	0.89
	III	3.68	6.27	4.10	-0.84	Ι	1.82	1.01	1.99	0.97	1.61
InAlSeS2-β	I	3.78	6.36	3.87	-0.84	I	2.66	1.83	2.07	1.17	2.33
	Π	3.68	6.33	3.87	-0.83	D	1.86	1.21	1.70	0.72	1.62
	III	3.67	6.42	4.10	-0.83	I	2.23	1.41	1.60	0.65	1.94
InAlSTe ₂ -a	I	4.06	6.88	4.46	-0.53	М	-	-	1.18	-	-
	П	3.96	6.83	4.44	-0.53	D	1.27	0.56	1.75	1.06	0.74
	ш	4.06	6.49	3.75	-0.63	I	1.38	0.83	1.10	1.11	0.14
InAlSTe2-β	I	4.07	6.92	4.42	-0.56	I	0.57	0.07	0.83	-0.07	0.25
	II	3.94	7.00	4.42	-0.53	Ι	1.39	0.79	1.78	0.99	0.95
	III	4.00	6.68	3.81	-0.55	I	1.58	1.08	1.55	1.25	0.65
InAlTeS2-a	Ι	4.01	6.26	3.80	-0.72	Ι	3.13	2.17	1.89	1.62	2.17
	п	3.79	6.30	3.79	-0.73	М	4	- 27	1.37	-	144
	III	3.74	6.63	4.54	-0.64	М	-	-	1.77	-	-
InAlTeS2-β	Ι	3.89	6.50	3.85	-0.66	Ι	1.42	0.76	2.30	1.19	1.30
	н	3.80	6.44	3.83	-0.67	М	0.30	0	1.35	-	
	III	3.76	6.72	4.47	-0.66	D	0.77	0.14	1.25	0.31	0.48
InAlSeTe2-a	Ι	4.15	6.97	4.43	-0.56	М	0.15	-	1.06	-	-
	II	4.04	6.95	4.43	-0.56	Ι	1.46	0.79	1.53	1.09	0.66
	ш	4.08	6.72	3.99	-0.62	I	1.36	0.83	1.15	1.08	0.20
InAlSeTe ₂ -β	I	4.14	7.02	4.40	-0.58	I	0.89	0.36	0.96	0.21	0.41
	Π	4.02	7.08	4.41	-0.56	Ι	1.67	1.07	1.61	1.00	1.05
	III	4.07	6.87	4.02	-0.58	Ι	1.69	1.18	1.40	1.14	0.72
InAlTeSe2-a	I	4.12	6.57	4.02	-0.71	I	2.43	1.66	1.60	1.38	1.43
	II	3.95	6.61	4.02	-0.71	М	0.19	0	1.19	-	-
	III	3.89	6.83	4.48	-0.66	D	0.51	0	1.44	0.40	0.32
InAlTeSe2-β	Ι	4.02	6.77	4.04	-0.67	Ι	1.92	1.24	1.86	1.14	1.40
	П	3.93	6.73	4.04	-0.69	D	0.96	0.46	1.21	0.55	0.40
	III	3.90	6.93	4.44	-0.68	D	1.24	0.61	1.32	0.53	0.80

Table S4 Calculated lattice parameters (a=b), total heights (h), interlayer distances between the two Group-III metal layers (l), formation energies (E_{form}), band types, band gaps at the HSE level (E_g^{HSE}) and the PBE level (E_g^{PBE}), differences of electrostatic potential between the two surfaces ($\Delta \phi$), overpotentials for the hydrogen evolution reaction χ (H₂) and the oxygen evolution reaction χ (O₂) of the GaAlXY₂ (X, Y = S/Se/Te) monolayers, including α and β phases (here, the most stable configurations are highlighted with blue font, and a material with a bandgap below 0.4 eV is typically classified as a metal).

Materials	Туре	a = b (Å)	<i>h</i> (Å)	<i>l</i> (Å)	<i>E_{form}</i> (eV/atom)	Band type	E_g^{HSE} (eV)	E_g^{PBE} (eV)	Ư (eV)	χ(H ₂) (eV)	$\chi(0_2)$ (eV)
GaAlSSe2-a	I	3.75	6.18	3.95	-0.85	I	1.66	0.96	1.53	1.07	0.89
	II	3.92	6.21	3.96	-0.81	I	2.01	1.23	1.76	1.14	1.40
	Ш	3.93	6.09	3.71	-0.86	I	2.10	1.40	1.45	1.12	1.21
GaAlSSe ₂ -β	I	3.74	6.19	3.92	-0.91	I	1.52	0.82	1.70	0.64	1.36
	II	3.83	6.19	3.93	-0.91	I	2.42	1.58	2.02	1.35	1.85
	III	3.86	6.09	3.68	-0.88	D	1.99	1.30	2.06	1.32	1.51
GaAlSeS2-a	Ι	3.71	6.00	3.72	-0.86	I	2.74	1.88	1.79	1.28	2.02
	п	3.84	5.97	3.72	-0.90	I	1.84	1.16	1.55	1.20	0.97
	III	3.83	6.09	3.97	-0.86	I	1.81	1.04	1.81	1.17	1.22
GaAlSeS₂-β	I	3.68	6.00	3.70	-0.95	I	3.01	2.17	2.30	1.65	2.43
	II	3.80	5.99	3.69	-0.93	D	1.53	0.85	1.99	1.00	1.28
	III	3.78	6.08	3.94	-0.93	I	2.08	1.24	1.90	1.00	1.74
GaAlSTe ₂ -a	Ι	3.93	6.70	4.35	-0.54	М	0.12	0	1.03	-	-
	II	4.14	6.73	4.34	-0.45	D	0.69	0.13	1.79	0.83	0.42
	Ш	4.19	6.32	3.66	-0.58	I	1.13	0.60	0.85	0.57	0.17
GaAlSTe ₂ -β	I	3.95	6.64	4.28	-0.55	М	-	-	1.00	-	-
	II	4.02	6.64	4.28	-0.59	I	1.17	0.61	1.91	1.13	0.71
	ш	4.12	6.35	3.64	-0.62	I	1.11	0.66	1.67	1.24	0.32
GaAlTeS2-a	Ι	3.85	6.14	3.70	-0.65	I	2.19	1.39	1.82	1.24	1.54
	П	3.95	6.14	3.67	-0.74	М	-		1.20	()	-
	III	3.92	6.53	4.47	-0.65	М	-	-	1.48	-	-
GaAITeS2-β	I	3.80	6.12	3.67	-0.77	I	1.85	1.17	2.44	1.40	1.66
	II	3.93	6.12	3.64	-0.73	М	-	-	1.46	-	-
	III	3.87	6.40	4.34	-0.71	М	0.19	0	1.46	-	-
GaAlSeTe2-a	Ι	4.01	6.80	4.32	-0.54	Ι	0.42	-	0.88	0.43	-0.36
	Π	4.19	6.81	4.32	-0.50	Ι	0.86	0.31	1.47	0.72	0.37
	Ш	4.22	6.55	3.90	-0.57	I	1.15	0.63	0.95	0.63	0.24
GaAlSeTe ₂ -β	Ι	4.02	6.74	4.25	-0.58	М	0.24	0	1.05	-	-
	II	4.12	6.74	4.26	-0.60	Ι	1.40	0.83	1.72	1.07	0.82
	Ш	4.16	6.53	3.86	-0.63	I	1.29	0.83	1.50	1.08	0.48
GaAlTeSe2-a	Ι	3.97	6.44	3.92	-0.65	Ι	1.97	1.26	1.50	1.00	1.24
	Π	4.08	6.41	3.67	-0.69	I	0.74	0.24	0.93	0.65	-0.20
	III	4.05	6.70	4.38	-0.64	М	0.40	0	1.27	-	-
GaAlTeSe₂-β	I	3.94	6.41	3.88	-0.74	Ι	2.11	1.48	2.00	1.24	1.64
	II	4.04	6.42	3.87	-0.72	М	0.23	0	1.39	-	-
	III	4.00	6.61	4.29	-0.71	D	0.73	0.12	1.44	0.45	0.48

Table S5 The efficiency of light absorption (η_{abs}), the efficiency of carrier utilization (η_{cu}), the STH efficiency (η_{STH}), and the corrected STH efficiency (η'_{STH}) of the MNX₃ (M, N = In/Ga/Al; X = S/Se/Te) monolayers, including α and β phases.

Materials MNX ₃	η_{abs} (%)	$\eta_{\mathit{cu}}(\%)$	$\eta_{STH}(\%)$	$\eta'_{\it STH}$ (%)
InGaS ₃ -a	50.5	53.8	27.2	19.6
InGaS ₃ -β	18.7	42.8	8.01	7.3
InGaSe ₃ -a	81.9	56.4	46.2	28.3
InGaSe ₃ -β	47.1	52.7	24.9	20.0
InGaTe ₃ -a	96.0	56.9	54.7	33.7
InGaTe ₃ -β	76.7	38.5	29.5	22.2
InAlS ₃ -a	22.5	44.2	9.95	8.53
InAlS ₃ -β	11.7	40.0	4.69	4.37
InAlSe ₃ -a	52.8	54.7	28.9	21.1
InAlSe ₃ -β	31.3	47.2	14.8	12.4
InAlTe ₃ -a	77.4	41.8	32.4	22.1
InAlTe ₃ -β	58.2	56.7	33.0	24.9
GaAlS ₃ -a	14.4	41.2	5.91	5.42
GaAlS ₃ -β	9.8	39.1	3.82	3.61
GaAlSe ₃ -a	43.9	51.5	22.6	17.9
GaAlSe ₃ -β	41.0	50.5	20.7	15.9
GaAlTe ₃ -a	-	-	-	-
GaAlTe ₃ -β	73.8	51.1	37.8	25.3

X, Y = S/Se/Te) monolayers, including α and β phases									
Materials	Туре	η_{abs} (%)	$\eta_{cu}(\%)$	$\eta_{STH}(\%)$	$\eta'_{STH}(\%)$				
InGaSSe2-a	III	81.3	67.0	54.5	32.0				
InGaSSe ₂ -β	Ι	55.2	55.6	30.7	24.5				
InGaSeS2-a	Ι	37.3	49.2	18.4	14.3				
InGaSeS2- <i>β</i>	II	40.0	50.2	20.1	16.9				
InGaSTe ₂ -a	III	88.6	45.9	40.6	25.0				
InGaSTe ₂ -β	Ι	-	-	-	-				
InGaTeS2-a	Ι	17.3	42.3	7.3	6.5				
InGaTeS2- <i>β</i>	II	-	-	-	-				
InGaSeTe2-a	III	89.1	52.7	47.0	29.3				
InGaSeTe ₂ -β	Ι	-	-	-	-				
InGaTeSe2-a	I	37.4	49.3	18.5	14.8				

44.8

36.4

27.9

InGaTeSe2-β

Π

81.2

Table S6 The efficiency of light absorption (η_{abs}) , the efficiency of carrier utilization (η_{cu}) , the STH efficiency (η_{STH}) , and the corrected STH efficiency (η'_{STH}) of the most stable InGaXY₂ (X, Y = S/Se/Te) monolayers, including α and β phases.

Table S7 The efficiency of light absorption (η_{abs}), the efficiency of carrier utilization (η_{cu}), the STH efficiency (η_{STH}), and the corrected STH efficiency (η'_{STH}) of the most stable InAlXY₂ (X, Y = S/Se/Te) monolayers, including α and β phases.

Materials	Туре	η_{abs} (%)	η_{cu} (%)	η_{STH} (%)	η'_{STH} (%)
InAlSSe2-a	III	45.4	52.1	23.7	18.0
InAlSSe2-β	Π	20.9	43.6	9.1	8.0
InAlSeS2-a	II	68.6	60.8	41.7	26.1
InAlSeS2-β	Ι	13.3	40.7	5.4	5.0
InAlSTe2-a	III	68.1	33.2	22.6	16.5
InAlSTe2-β	Ι	-	-	-	-
InAlTeS2-a	II	-	-	-	-
InAlTeS2-β	II	-	-	-	-
InAlSeTe ₂ -a	III	69.3	37.0	25.7	18.4
InAlSeTe ₂ -β	Ι	89.1	61.6	54.8	36.6
InAlTeSe2-a	Ι	19.9	43.3	8.6	7.8
InAlTeSe,-ß	II	87.4	58.6	51.3	31.8

Table S8 The efficiency of light absorption (η_{abs}), the efficiency of carrier utilization (η_{cu}), the STH efficiency (η_{STH}), and the corrected STH efficiency (η'_{STH}) of the most stable GaAlXY₂ (X, Y = S/Se/Te) monolayers, including α and β phases.

Materials	Туре	η_{abs} (%)	η_{cu} (%)	η_{STH} (%)	$\eta'_{STH}(\%)$
GaAlSSe ₂ -a	III	32.1	47.5	15.2	12.9
GaAlSSe ₂ -β	Ι	603	57.5	34.7	23.4
GaAlSeS2-a	Π	43.9	51.5	22.6	17.6
GaAlSeS2-β	Ι	5.9	37.0	2.2	2.1
GaAlSTe2-a	III	80.0	41.2	33.0	24.2
GaAlSTe ₂ -β	III	81.0	49.9	40.4	23.3
GaAlTeS2-a	П	-	-	-	
GaAlTeS ₂ -β	Ι	43.6	51.4	22.4	15.3
GaAlSeTe2-a	III	79.1	44.4	35.1	25.0
GaAlSeTe ₂ -β	III	71.3	55.7	39.7	25.8
GaAlTeSe2-a	II	-	-	-	-
GaAlTeSe ₂ -β	Ι	31.6	47.3	15.0	12.0

Table S9 The efficiency of light absorption (η_{abs}), the efficiency of carrier utilization (η_{cu}), the STH efficiency (η_{STH}), and the corrected STH efficiency (η'_{STH}) of the pristine Group-III metal trichalcogenide M₂X₃ monolayers (M = In/Ga/Al, X = S/Se/Te).

Materials MNX ₃	$\eta_{abs}(\%)$	$\eta_{cu}(\%)$	$\eta_{STH}(\%)$	$\eta'_{STH}(\%)$
In ₂ S ₃	37.7	49.4	18.6	14.8/14.4[1]
In ₂ Se ₃	64.6	58.7	37.9	26.4/26.9[1]
In ₂ Te ₃	77.1	53.0	40.9	28.9/32.1[1]
Ga ₂ S ₃	15.1	41.5	6.3	5.8/6.4[1]
Ga ₂ Se ₃	51.4	54.2	27.8	21.5/21.9[1]
Ga ₂ Te ₃	-	-	-	-
Al ₂ S ₃	7.9	38.2	3.0	2.9/2.6 ^[1]
Al ₂ Se ₃	21.6	43.9	9.5	8.2/8.0 ^[1]
Al ₂ Te ₃	62.9	45.7	28.7	20.1/21.4 ^[1]

Table S10 Calculated lattice parameters (a=b), total heights (h), interlayer distances between the two Group-III metal layers (l), formation energies (E_{form}), band types, band gaps at the HSE level (E_g^{HSE}) and the PBE level (E_g^{PBE}), differences of electrostatic potential between the two surfaces ($\Delta \phi$), overpotentials for the hydrogen evolution reaction $\chi(H_2)$ and the oxygen evolution reaction $\chi(O_2)$ of the pristine Group-III trichalcogenide M₂X₃ monolayers (M = In/Ga/Al, X = S/Se/Te), as well as some available results^{1,2}.

Materials MNX ₃	$\begin{array}{c} \boldsymbol{a} = \boldsymbol{b} \\ (\text{\AA}) \end{array}$	<u></u> (Å)	1 (Å)	<i>E_{form}</i> (eV/atom)	Band type	E_g^{HSE} (eV)	$\begin{array}{c} E_g^{PBE} \\ (eV) \end{array}$	Ư (eV)	χ(H ₂) (eV)	χ(0 ₂) (eV)
In_2S_3	3.94	6.34	4.02	-0.68	In	1.97/1.91[1]/1.94[2]	1.20	1.69/1.68 ^[1] /1.68 ^[2]	0.26/0.21 ^[1] /0.16 ^[2]	2.18/2.15 ^[1] /2.10 ^[2]
In ₂ Se ₃	4.11	6.79	4.22	-0.70	In	1.44/1.43 ^[1] /1.37 ^[2]	0.79	1.40/1.38[1]/1.22[2]	0.19/0.19 ^[1] /0.13 ^[2]	1.42/1.39 ^[1] /1.40 ^[2]
In ₂ Te ₃	4.40	7.35	4.53	-0.46	In	1.19/1.14 ^[1] /1.12 ^[2]	0.64	1.01/1.00 ^[1] /1.05 ^[2]	0.57/0.50[1]/0.58[2]	0.39/0.41 ^[1] /0.37 ^[2]
Ga ₂ S ₃	3.65	5.92	3.75	-0.79	In	2.59/2.55[1]/2.56[2]	1.69	1.63/1.65 ^[1] /1.64 ^[2]	1.06/1.05 ^[1] /1.01 ^[2]	1.93/1.92 ^[1] /1.89 ^[2]
Ga ₂ Se ₃	3.84	6.33	3.94	-0.74	In	1.69/1.68 ^[1] /1.64 ^[2]	0.97	1.30/1.30 ^[1] /1.30 ^[2]	$0.71/0.69^{[1]}\!/0.65^{[2]}$	$1.05/1.06^{[1]}/1.06^{[2]}$
Ga ₂ Te ₃	4.15	6.93	4.28	-0.44	In	0.74/0.77 ^[1] /0.72 ^[2]	0.25	$0.88/0.88^{[1]}\!/\!0.88^{[2]}$	$0.43/0.43^{[1]}\!/\!0.36^{[2]}$	$\textbf{-0.05/-0.01^{[1]}/0.01^{[2]}}$
Al ₂ S ₃	3.59	5.82	3.69	-1.17	In	2.90/2.94[1]	2.12	2.42/2.35[1]	1.73/1.72[1]	2.35/2.34[1]
Al ₂ Se ₃	3.79	6.24	3.90	-0.99	In	2.38/2.41[1]	1.70	1.98/1.96 ^[1]	1.64/1.63[1]	1.50/1.51[1]
Al ₂ Te ₃	4.12	6.87	4.24	-0.55	In	1.47/1.51[1]	0.93	1.44/1.43[1]	1.28/1.27[1]	0.40/0.43[1]

Figure S1 Calculated band structures of the MNX₃ (M, N = In/Ga/Al; X = S/Se/Te) monolayers under the HSE functional, including α and β phases. The Fermi levels are set to 0 eV.

Figure S2 Calculated plane-averaged electrostatic differences of the MNX₃ (M, N = In/Ga/Al; X = S/Se/Te) monolayers, including α and β phases.

Figure S3 Chemical-bonding analysis of the middle-layer chalcogenides with adjacent metals in $InGaS_3-\alpha/\beta$ and $GaAlTe_3-\alpha/\beta$ with bonding levels to the right and antibonding ones to the left. The colors of the COHP plot correspond to the bonds highlighted in the structural fragments shown.

Figure S4 Chemical-bonding analysis of the middle-layer chalcogenides with adjacent metals in $InGaS_3-\alpha$, $InGaSe_3-\alpha$, and $InGaTe_3-\alpha$ with bonding levels to the right and antibonding ones to the left. The colors of the COHP plot correspond to the bonds highlighted in the structural fragments shown in the upper left corner.

Figure S5 Calculated band structures of the most stable InGaXY₂ (X, Y=S/Se/Te) monolayers under the HSE functional, including α and β phases. The Fermi levels are set to 0 eV.

Figure S6 Calculated plane-averaged electrostatic differences of the most stable InGaXY₂ (X, Y=S/Se/Te) monolayers, including α and β phases.

Figure S7 Calculated band structures of the most stable InAlXY₂ (X, Y = S/Se/Te) monolayers under the HSE functional, including α and β phases. The Fermi levels are set to 0 eV.

Figure S8 Calculated plane-averaged electrostatic differences of the most stable InAlXY₂ (X, Y = S/Se/Te) monolayers, including α and β phases.

Figure S9 Calculated band structures of the most stable GaAlXY₂ (X, Y=S/Se/Te) monolayers under the HSE functional, including α and β phases. The Fermi levels are set to 0 eV.

Figure S10 Calculated plane-averaged electrostatic differences of the most stable GaAlXY₂ (X, Y = S/Se/Te) monolayers, including α and β phases.

Figure S11. (a) Evolution of total energies (temperatures) from AIMD simulations at 300K and (b) the phonon dispersions for the GaAlS₃- α/β and GaAlSSe₂- α/β (most stable type) derivatives.

Figure S12 Calculated band structures of the pristine M_2X_3 monolayers (M = In/Ga/Al, X = S/Se/Te) under the HSE06 functional. The Fermi levels are set to 0 eV.

Figure S13 Calculated plane-averaged electrostatic differences of the pristine Group-III trichalcogenide M_2X_3 monolayers (M = In/Ga/Al, X = S/Se/Te) with the HSE06 potential. The red dashed lines represent Fermi levels.

Figure S14 The orbital-projected band structures and partial charge densities of the CBMs and VBMs for the GaAlSTe₂- α and GaAlSeTe₂- α monolayers.

Figure S15 Calculated enthalpy of solvation ΔH_{sol} for the 19 MNX₃ and MNXY₂ monolayers (the STH efficiency $\geq 20\%$). The high ΔH_{sol} suggests that the relevant monolayer is insoluble in water.

Figure S16 Calculated H adsorption free energy of hydrogen reduction half-reaction in the basal planes of the perfect InGaTe₃- α , GaAlSSe₂- β , InGaSSe₂- β , and InAlSeTe₂- β monolayer structures.

Figure S17. (a) Formation energies of vacancy defects in the InGaTe₃- α , InGaSSe₂- β , InAlSeTe₂- β and GaAlSSe₂- β monolayers. (b) The density of states of the InGaSSe₂- β , InAlSeTe₂- β and GaAlSSe₂- β monolayers with vacancy defects. as well as the insets are their charge density differences, here, the orange and blue colors represent electron accumulation and depletion areas.

References

- 1 C.-F. Fu, J. Sun, Q. Luo, X. Li, W. Hu and J. Yang, Nano Lett., 2018, 18, 6312–6317.
- 2 X. Liu, P. Cheng, X. Zhang, T. Shen, J. Liu, J.-C. Ren, S. Li and W. Liu, J. Mater. Chem. A, 2021, 9, 14515.