Supporting Information

High performance N-doped carbon nanosheet/MnO₂ cathode derived from bacterial cellulose for aqueous Zn-ion

batteries

Wenhai Wang^{a,b}, Ashley P. Black^b, Cheng Liu^b, Vlad Martin-Diaconescu^c, Laura Simonelli^c, Dino Tonti^{b*}

^aInstitute of Clean Energy and Advanced Nanocatalysis (iClean), School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China

^bInstitut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), Campus UAB, ES 08193 Bellaterra, Barcelona, Spain

^cALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Barcelona, Spain

*Corresponding author. E-mail address: <u>dino.t@csic.es</u> (D. Tonti)

Fig. S1. SEM images of Carbon-w (a), C/MnO_2 (b), Commercial MnO_2 (c). TEM images of Carbon-w (d), C/MnO_2 (e), Commercial MnO_2 (f).

Fig. S2. Transmission electrom mucroscopy of NCS/MnO₂. (a) Selected area electron diffraction (SAED) in the region of Figure 1e. (b) EDS elemental line profiles.

Fig. S3 (a) XAS of NCS/MnO₂, commercial MnO_2 and reference MnO_2 ; (b) XRD pattern of commercial MnO_2 .

Although the energy position of Mn peak for commercial MnO_2 is also close to reference MnO_2 , there are some small difference (shape and engergy position) of Mn peaks between commercial MnO_2 and reference MnO_2 . Probably because the synthetic methods of MnO_2 for suppliers are various, which affect Mn's chemical environment.

Fig. S4. (a) Nitrogen adsorption-desorption of NCS and carbon-w; (b) pore size distribution of NCS and carbon-w; (c) nitrogen adsorption-desorption of NCS/MnO₂ and C/MnO₂; (d) nitrogen adsorption-desorption of commercial MnO_2 .

Fig. S5. TG curves of NCS/MnO₂ and C/MnO₂ in synthetic air flow.

Fig. S6. Full XPS spectra of NCS/MnO₂, NCS and C/MnO₂

Fig. S7. Complete high-resolution XPS spectra of Mn 2p of of NCS/MnO₂, NCS and C/MnO_2 .

Fig. S8. Galvanostatic discharge/charge profiles of (a) Commercial MnO_2 and (b) C/MnO_2 at different current densities.

Fig. S9. Extended NCS/MnO₂ cycling performance at 0.2 A g⁻¹.

Fig. S10. Cycling performance of NCS and carbon-w at 0.2 A g⁻¹.

Fig. S11. Cycling performace of NCS/MnO₂ at 0.2 A g⁻¹ with 2 M ZnSO₄.

Fig. S12. The discharge and charge capacity of NCS/MnO₂ at 2 A g^{-1} during the early stage. Insert: druing the initial 5 cycles.

Fig. S13. FTIR of (a) dried BC, urea and dried BC/urea (b) dried FP, urea and dried FP/urea, (b) dried PP, urea and dried PP/urea

Fig. S14. Comparison of carbons from urea-treated (UC) and untreated (C) filter paper (FP). SEM images of (a) C-FP, (b) UC-FP, (c) C-FP/MnO₂ and (d) UC-FP/MnO₂. (e) Cycling performance of C-FP/MnO₂ and (d) UC-FP/MnO₂ at 2 A g⁻¹.

Fig. S15. Comparison of carbons from urea-treated (UC) and untreated (C) printer paper (PP). SEM images of (a) C-PP, (b) UC-PP, (c) C-PP/MnO₂ and (d) UC-PP/MnO₂. (e) Cycling performance of C-PP/MnO₂ and UC-PP/MnO₂ at 2 A g^{-1} .

Fig. S16. (a) Nyquist plots at the open circuit voltage and (b) linear fits between Z' and w^{-1/2} for NCS/MnO₂, C/MnO₂ and Commercial MnO₂.

Fig. S17. (a) CV curves of NCS/MnO₂ at various scan rates. (b) relation between $\log i$ and $\log v$. (c) the obtained b-values for the four peaks.

Generally the measured current (*i*) at a certain potential is consisted of the capacitive current (k_1v) and the diffusion current $(k_2v^{1/2})^{1}$: $i=k_1v+k_2v^{1/2}$. The value of k_1 and k_2 at a certain potential was obtained by fitting. The capacitive-like contribution is the integral area ratio between potential- k_1v curves and potential-*i* curves.

Fig. S19. Galvanostatic discharge/charge profiles of NCS/MnO₂ during the initial two cycles at 0.2 A g^{-1} .

Fig. S20. (a) SEM image and (b) XRD pattern of bare carbon paper.

Fig. S21. SEM images of the 1st cycle for NCS/MnO₂.

Fig. S22. SEM of the 1st discharge to 0.8 V of the NCS/MnO₂ electrode after acetic acid treatment (a); and comparison of XRD patterns (b).

Fig. S23. Charge profiles for NCS/MnO $_2$ in presence of different chemical species.

Fig. S24. SEM and TEM images at the 2nd cycle for NCS/MnO₂.

Fig. S25. XRD patterns of the 2nd cycle for NCS/MnO₂ at 0.2 A g⁻¹.

Samples	BET surface area	External surface	Pore volume
	$(m^2 g^{-1})$	area (m 2 g $^{-1}$)	$(cm^3 g^{-1})$
Carbon-w ²	1009	153	0.19
NCS	431	269	0.86
C/MnO ₂	401	112	0.12
NCS/MnO ₂	229	183	0.42
Commercial MnO ₂	23	20	0.02

Table S1. Textural data of samples.

Table S2. Fraction of Mn^{3+} component with respect to the total $Mn 2p_{3/2}$ area measured by XPS. Fits were obtained by adopting for Mn^{3+} and Mn^{4+} the multiplet shapes obtained by Ilton et al. ³. For all components of both multiplets the same intensities and relative binding energies were maintained as reported in Ref. 2, and a fixed Gauss/Lorentz mixing factor of 0.5 was used.

Samples	NCS/MnO ₂	C/MnO ₂	Commercial MnO ₂
Mn ³⁺ fraction	0.60	0.91	0.26

Table S3. Comparison the cycling performance between NCS/MnO_2 and reported cathodes for aqueous zinc ion batteries.

Cathode	Cycling performance	References	
	114 mAh g ⁻¹ at 2 A g ⁻¹	This work	
INCS/IVIIIO ₂	after 1800 cycles		
MnOx@N-C	100 mAh g ⁻¹ at 2 A g ⁻¹	Adv Energy Mater. 2018, 8	
	after 1600 cycles	1801445.	
carbon coated MnO	116 mAh g^{-1} at 1 A g^{-1}	Energy Storage Mater. 2020,	
	after 1500 cycles	24 , 394-401.	
Co-Mn ₃ O ₄ /carbon	103 mAh g ⁻¹ at 2 A g ⁻¹	Adv Energy Mater. 2021, 11,	
nanosheet array	after 1100 cycles	2003203	
	49 mAh g ⁻¹ at 2 A g ⁻¹ after	Energy Storage Mater. 2020,	
$\Sigma m m_2 O_4 microrous$	1000 cycles	28 , 407-417.	
MoS ₂	102 mAh g ⁻¹ at 0.5A g ⁻¹	Energy Storage Mater. 2019,	
	after 600 cycles	16 , 527-534.	
Oau Ma O	112 mAh g ⁻¹ at 1 A g ⁻¹	ACS Appl Mater Interfaces.	
	after 600 cycles	2020, 12 , 28199	
	~ 37 mAh g ⁻¹ at 1 A g ⁻¹	ACS Sustainable Chem Eng.	
INa _{0.44} IVIIIO ₂	after 800 cycles	2020, 8, 10673-10681.	
$7 \text{m V} \cap (O \Pi) \cdot 2 \Pi \cap$	101 mAh g^{-1} at 0.2 A g^{-1}	Adv Mater. 2018, 30 , 1705580.	
$L_{113} V_2 U_7 (U \Pi)_2 \cdot 2 \Pi_2 U$	after 300 cycles		
α-(Mn ₂ O ₃ -MnO ₂)-500	95 mAh g ⁻¹ at 2 A g ⁻¹ after	ACS Appl Mater Interfaces.	
	800 cycles	2020, 12 , 32526-32535.	

	I		
Substrate	BC	FP	PP
Absorbed urea	0.15	0.004	0.005
mass (g cm ⁻²)	0.15	0.004	0.005
Bare substrates	0.006	0.000	0.009
(g cm ⁻²)	0.000	0.009	0.008
Mass ratio			
between the	25	0.4	0.6
absorbed urea/the	23	0.4	0.0
bare substrate			

Table S4. Masses of different substrates and urea absorbed after drying

Reference

- 1 S. Bi, Y. Wu, A. Cao, J. Tian, S. Zhang and Z. Niu, *Mater. Today Energy*, 2020, **18**, 100548.
- 2 W. Wang, S. Khabazian, S. Roig-Sanchez, A. Laromaine, A. Roig and D. Tonti, *Renew. Energ.*, 2021, **177**, 209-215.
- 3 E. S. Ilton, J. E. Post, P. J. Heaney, F. T. Ling and S. N. Kerisit, *Appl. Surf. Sci.*, 2016, **366**, 475-485.