Supplementary Information

## Boron-Nitride Based Dispersive Composite Coating on Nickel-Rich Layered Cathode for Enhanced Cycle Stability and Safety

Hsi Chen<sup>1,3</sup>, Yan-Cheng Chen<sup>1</sup>, Hao-Wen Liu<sup>1</sup>, Shu-Jui Chang<sup>1</sup>, Cheng-Hung Liao<sup>1</sup>, Senthil-Kumar Parthasarathi<sup>1</sup>, Satish Bolloju<sup>1</sup>, Yu-Ting Weng<sup>1</sup>, Jyh-Fu Lee<sup>2</sup>, Jin-Ming Chen<sup>2</sup>, Hwo-Shuenn Sheu<sup>2</sup>, Chih-Wen Pao<sup>2</sup>, and Nae-Lih Wu<sup>1,3,\*</sup>

<sup>1</sup>Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.

<sup>2</sup>National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan.

<sup>3</sup>Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 106, Taiwan.

<sup>\*</sup>To whom correspondence should be addressed: nlw001@ntu.edu.tw



Figure S1. XRD pattern of h-BN.

| Sample                   | NCM      |   |   |            |           |  |  |
|--------------------------|----------|---|---|------------|-----------|--|--|
| <b>Rwp</b> (%)           | 1.39     |   |   |            |           |  |  |
| a (Å)                    | 2.87157  |   |   |            |           |  |  |
| <b>c</b> (Å)             | 14.19595 |   |   |            |           |  |  |
| c/a                      | 4.94362  |   |   |            |           |  |  |
| Volume (Å <sup>3</sup> ) | 101.375  |   |   |            |           |  |  |
| Atom                     | Site     | Х | У | Z          | Occupancy |  |  |
| Mn                       | 3a       |   | 0 | 0          | 0.05      |  |  |
| Со                       |          | 0 |   |            | 0.12      |  |  |
| Ni                       |          | 0 |   |            | 0.819     |  |  |
| Li                       |          |   |   |            | 0.0111(4) |  |  |
| Li                       | 3b       | 0 | 0 | 1/2        | 0.989     |  |  |
| Ni                       |          |   |   |            | 0.0111(4) |  |  |
| 0                        | 6c       | 0 | 0 | 0.25700(4) | 1         |  |  |

 Table S1. Rietveld refinement results of pristine NCM.

| Sample                   | NCM@PB   |         |   |            |           |  |  |  |
|--------------------------|----------|---------|---|------------|-----------|--|--|--|
| <b>Rwp</b> (%)           | 1.49     |         |   |            |           |  |  |  |
| a (Å)                    |          | 2.87199 |   |            |           |  |  |  |
| <b>c</b> (Å)             | 14.19788 |         |   |            |           |  |  |  |
| c/a                      | 4.94357  |         |   |            |           |  |  |  |
| Volume (Å <sup>3</sup> ) | 101.419  |         |   |            |           |  |  |  |
| Atom                     | Site     | X       | у | Z          | Occupancy |  |  |  |
| Mn                       | - 3a     |         | 0 | 0          | 0.05      |  |  |  |
| Со                       |          | 0       |   |            | 0.12      |  |  |  |
| Ni                       |          | 0       |   |            | 0.819     |  |  |  |
| Li                       |          |         |   |            | 0.0105(5) |  |  |  |
| Li                       | 3b       | 0       | 0 | 1/0        | 0.989     |  |  |  |
| Ni                       |          |         |   | 1/2        | 0.0105(5) |  |  |  |
| 0                        | бс       | 0       | 0 | 0.25757(4) | 1         |  |  |  |

Table S2. Rietveld refinement results of NCM@PB.



Figure S2. SEM images of (a) h-BN, (b) Super P and (c) calcined PVDF.



Figure S3. TGA curve of PVDF under N<sub>2</sub>-atmosphere.



Figure S4. Solubility change of PVDF and 320°C calcined PVDF in NMP.



**Figure S5**. Rate capability of pristine NCM and NCM@PB (2.5-4.3V, error bars: standard deviation of three cells).



**Figure S6**. (a) Cycling performance of pristine NCM, NCM@P, NCM@PB at 1Crate (2.5-4.3V; error bars: standard deviation of three cells) under room temperature; (b) Normalized cycling performance of NCM@P.



Figure S7. Normalized 1C-rate voltage profiles at different cycles of (a) pristine NCM and (b) NCM@PB.



**Figure S8.** Formation cycles of (a) NCM/Graphite and (b) NCM@PB/Graphite full cells at 0.1C-rate.



**Figure S9**. Normalized cycling performance of pristine NCM and NCM@PB at 1Crate (2.5-4.3V; error bars: standard deviation of three cells).



**Figure S10**. Ex situ Ni L<sub>3</sub>-edge spectra of pristine NCM during charging of the 1<sup>st</sup> cycle.



**Figure S11**. Self-discharge curves of pristine NCM and NCM@PB. Both cells were first charged to 4.3V and rest for 1 week. The voltage of both cells was recorded while resting. Note that the initial voltage is lower than 4.3V due to depolarization effect.



Figure S12. O K-edge spectra of Li<sub>2</sub>CO<sub>3</sub>, LiOH, Ni(OH)<sub>2</sub>, NiO and NiO<sub>2</sub>.



Figure S13. Ex situ O K-edge spectra of pristine NCM during charging of the 1<sup>st</sup> cycle.

| Surface<br>modification<br>material               | Method             | Cathode                                                                   | Process<br>temperature (time)                                  | Voltage range<br>(V v.s. Li <sup>+</sup> /Li) | Cycle stability<br>(25 °C)      | Thermal stability | Full cell performance | Ref. |
|---------------------------------------------------|--------------------|---------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------|---------------------------------|-------------------|-----------------------|------|
| Zr <sup>4+</sup>                                  | Doping             | LiNi <sub>0.83</sub> Co <sub>0.11</sub> Mn <sub>0.06</sub> O <sub>2</sub> | 500.0C (CL.)                                                   |                                               | 73.0%, 150 <sup>th</sup> at 1C  | N.A.              | N.A.                  | 1    |
| Al <sup>3+</sup>                                  | Doping             |                                                                           | $830 \ ^{\circ}C \ (6hr) \rightarrow 830 \ ^{\circ}C \ (12hr)$ | 3.0-4.3V                                      | 74.7%, 150 <sup>th</sup> at 1C  |                   |                       |      |
| Zr <sup>4+</sup> /Al <sup>3+</sup>                | Doping             |                                                                           |                                                                |                                               | 89.7%, 150 <sup>th</sup> at 1C  |                   |                       |      |
| Mg <sup>2+</sup>                                  | Doping             |                                                                           | 480 °C (5hr) →<br>750 °C (15hr)                                | 2.8 – 4.3V                                    | 84.5%, 200 <sup>th</sup> at 2C  | N.A.              | N.A.                  | 2    |
| Li <sub>3</sub> PO <sub>4</sub>                   | Coating            |                                                                           | 480 °C (N.A.)                                                  |                                               | 80.5%, 200 <sup>th</sup> at 2C  |                   |                       |      |
| Mg <sup>2+</sup> /Li <sub>3</sub> PO <sub>4</sub> | Doping<br>+Coating |                                                                           | 480 °C (5hr) →<br>750 °C (15hr) →<br>480 °C (N.A.)             |                                               | 90.0%, 200 <sup>th</sup> at 2C  |                   |                       |      |
| Nb <sup>5+</sup>                                  | Doping             |                                                                           | 480 °C (5hr) →<br>750 °C (15hr)                                | 2.8-4.3V                                      | 86.6%, 200 <sup>th</sup> at 1C  | N.A.              | N.A.                  | 3    |
| Mo <sup>6+</sup> /Li2MoO4                         | Doping<br>+Coating |                                                                           | 500 °C (12hr)                                                  | 2.7 – 4.3V                                    | 90.22%, 100 <sup>th</sup> at 1C | N.A.              | N.A.                  | 4    |
| W <sup>6+</sup>                                   | Doping             |                                                                           | $80 \ ^{\circ}C \ (5hr) \rightarrow 750$ $^{\circ}C \ (15hr)$  | 2.8-4.3V                                      | 69.9%, 500 <sup>th</sup> at 2C  | N.A.              | N.A.                  | 5    |

 Table S3. Summary of modification on Ni-rich cathodes

| Ti <sup>4+</sup> /LaNiLiO <sub>8</sub>                                                    | Doping<br>+Coating | LiNi0.8C00.1Mn0.1O2    | 480 °C (5hr) →<br>830 °C (12hr) | 2.7 – 4.3V                      | 90.55%, 200 <sup>th</sup> at 1C | <ul> <li>15 °C-delayed decomp. temp.</li> <li>43%-decreased heat release.</li> <li>16%-decreased maximum heat flow.</li> </ul>          | N.A.                                                     | 6                                                                                                                          |      |   |
|-------------------------------------------------------------------------------------------|--------------------|------------------------|---------------------------------|---------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------|---|
| LiAlO <sub>2</sub>                                                                        | Coating            |                        |                                 |                                 | 480 °C (5hr) →<br>750 °C (15hr) | 2.8 – 4.3V                                                                                                                              | 85.8%, 200 <sup>th</sup> at 0.5C                         | <ul><li>11 °C-delayed decomp. temp.</li><li>47%-decreased heat release.</li><li>10%-decreased maximum heat flow.</li></ul> | N.A. | 7 |
| Li <sub>3</sub> PO <sub>4</sub> -AlPO <sub>4</sub> -<br>Al(PO <sub>3</sub> ) <sub>3</sub> | Coating            |                        | 600 °C (6hr)                    | 3.0 – 4.3V                      | 85.4%, 50 <sup>th</sup> at 0.5C | <ul><li>6 °C-delayed decomp. temp.</li><li>22%-decreased heat release.</li><li>24%-decreased maximum heat flow.</li></ul>               | 71.8%, 100 <sup>th</sup><br>at 0.5C                      | 8                                                                                                                          |      |   |
| Li <sub>2</sub> MnO <sub>3</sub>                                                          | Coating            |                        | 850 °C (5hr)                    | 2.7 – 4.3V                      | 80.4%, 500 <sup>th</sup> at 1C  | <ul><li>14 °C-delayed decomp. temp.</li><li>45%-decreased heat release.</li><li>27%-decreased maximum heat flow.</li></ul>              | N.A.                                                     | 9                                                                                                                          |      |   |
| MgHPO4                                                                                    | Coating            |                        |                                 | 500 °C (5hr) →<br>750 °C (15hr) | 3.0-4.3V                        | 86.3%, 100 <sup>th</sup> at 0.5C                                                                                                        | N.A.                                                     | N.A.                                                                                                                       | 10   |   |
| h-BN                                                                                      | Coating            | LiNi0.83C00.12Mn0.05O2 | 320 °C (0.5hr)                  | 2.5 – 4.3V                      | 92.0%, 200 <sup>th</sup> at 1C  | <ul> <li>40 °C-delayed decomp. temp.</li> <li>44%-decreased heat release.</li> <li>41%-decreased maximum heat</li> <li>flow.</li> </ul> | 80%-capacity<br>mark: 360 <sup>th</sup><br>cycle at 0.3C | This<br>work                                                                                                               |      |   |

## References

- 1. Z. Zhu, Y. Liang, H. Hu, A. Gao, T. Meng, D. Shu, F. Yi and J. Ling, *Journal of Power Sources*, 2021, **498**, 229857.
- 2. W. Xiao, Y. Nie, C. Miao, J. Wang, Y. Tan and M. Wen, *Journal of Colloid and Interface Science*, 2022, **607**, 1071-1082.
- 3. J. Wang, Z. Yi, C. Liu, M. He, C. Miao, J. Li, G. Xu and W. Xiao, *Journal of Colloid* and Interface Science, 2023, **635**, 295-304.
- 4. T. Teng, L. Xiao, L. Shen, J. Ran, G. Xiang, Y. Zhu and H. Chen, *Applied Surface Science*, 2022, **601**, 154101.
- 5. J. Wang, C. Liu, Q. Wang, G. Xu, C. Miao, M. Xu, C. Wang and W. Xiao, *Journal of Colloid and Interface Science*, 2022, **628**, 338-349.
- H. P. Yang, H. H. Wu, M. Y. Ge, L. J. Li, Y. F. Yuan, Q. Yao, J. Chen, L. F. Xia, J. M. Zheng, Z. Y. Chen, J. Duan, K. Kisslinger, X. C. Zeng, W. K. Lee, Q. B. Zhang and J. Lu, *Advanced Functional Materials*, 2019, 29.
- 7. W. Tang, Z. Chen, F. Xiong, F. Chen, C. Huang, Q. Gao, T. Wang, Z. Yang and W. Zhang, *Journal of Power Sources*, 2019, **412**, 246-254.
- 8. Z. Feng, R. Rajagopalan, D. Sun, Y. G. Tang and H. Y. Wang, *Chemical Engineering Journal*, 2020, **382**.
- X. Huang, W. Zhu, J. Yao, L. Bu, X. Li, K. Tian, H. Lu, C. Quan, S. Xu, K. Xu, Z. Jiang, X. Zhang, L. Gao and J. Zhao, *Journal of Materials Chemistry A*, 2020, 8, 17429-17441.
- 10. D.-Y. Hwang, H.-S. Kim and S.-H. Lee, *Journal of Materials Chemistry A*, 2022, **10**, 16555-16569.