Supporting Information – Stoichiometry matters: Correlation between antisite defects, microstructure and magnetic behavior in the cathode material Li_{1-z}Ni_{1+z}O₂

Damian Goonetilleke,^{a,†, #} Björn Schwarz,^b Hang Li,^b Francois Fauth,^c Emmanuelle Suard,^d Stefan Mangold,^e Sylvio Indris,^b Torsten Brezesinski,^a Matteo Bianchini,^{a,e,‡} Daniel Weber^{b,#,*}

a Battery and Electrochemistry Laboratory (BELLA), Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

b Institute for Applied Materials-Energy Storage Systems (IAM-ESS), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany

c CELLS—ALBA Synchrotron, E-08290 Cerdanyola del Vallès, Barcelona, Spain

d Institut Laue-Langevin (ILL), BP 156, 71 Avenue des Martyrs, 38042 Grenoble, France

e Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

f BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen, Germany

⁺ Current Affiliation: Corporate Research and Development, Umicore, Watertorenstraat 33, 2250 Olen, Belgium

‡ University of Bayreuth, Bavarian Center for Battery Technology (BayBatt), Universitätsstrasse 30,
95447 Bayreuth, Germany

[#] equal author contribution.

* Email : daniel.weber3@kit.edu;

Exemplary SEM images for the determination of the particle size distribution

Figure S1: SEM images of $Li_{1-z}Ni_{1+z}O_2$ with $-0.05 \le z \le 0.05$, scale bar 500 nm.

Figure S2: SEM images of $Li_{1-z}Ni_{1+z}O_2$ with $0.10 \le z \le 0.35$, scale bar 200 nm.

Elemental Analysis

Znominal	Eq. Li	Eq. Ni
-0.05	1.03(4)	0.965(14)
-0.01	1.00(3)	0.999(14)
0.01	0.98(4)	1.017(14)
0.05	0.95(3)	1.051(15)
0.10	0.90(3)	1.099(15)
0.15	0.86(3)	1.142(16)
0.20	0.80(3)	1.195(17)
0.25	0.76(3)	1.239(17)
0.30	0.71(3)	1.289(18)
0.35	0.66(2)	1.337(19)

Table S1: Summary of results from ICP-OES on metal content in $Li_{1-z}Ni_{1+z}O_2$.

Diffraction patterns & crystallographic data

Figure 3: Patterns of $Li_{1-z}Ni_{1+z}O_2$ for a)+b) synchrotron X-ray diffraction for -0.05 $\leq z \leq 0.35$ and c) neutron diffraction for -0.05 $\leq z \leq 0.1$ and z = 0.20 with Y_{obs} in the color pattern used in the main manuscript as well as Y_{calc} in red and difference curve in blue.

atom	Wyckoff	x	У	z	SOF	B _{iso}
	position &					
	multiplicity					
Li	3 <i>b</i>	0	0	1/2	1-Ni _{Li}	B _{iso} (Li)
Ni	3 <i>b</i>	0	0	1/2	Ni _{Li}	B _{iso} (Li)
Ni	За	0	0	0	1-Li _{Ni}	B _{iso} (Ni)
Li	За	0	0	0	Li _{Ni}	B _{iso} (Ni)
0	6 <i>c</i>	0	0	z ₀	1	B _{iso} (O)

Table S2: Atomic coordinates, site occupancy factors (SOF) and isotropic displacement parameteres B_{iso} for $Li_{1-z}Ni_{1+z}O_2$ at 303 K.

X-ray absorption spectroscopy

For $Li_{1-z}Ni_{1+z}O_2$, the change in composition is associated with a change in the oxidation state of Ni. If we use the oxidation states of +1 and -2 for Li and O, respectively, then the oxidation state of Ni as a function of the Ni content present in the crystalline phase can be described as seen in Table S3. This was confirmed by X-ray absorption spectroscopy (XAS). The measurements clearly show a successive oxidation of Ni with decreasing z in $Li_{1-z}Ni_{1+z}O_2$ (Fig. S4). Assuming a Ni oxidation state of +3 for $LiNiO_2$ (z = 0), we clearly see a reduction toward 2+, and for the highest Li content (z = 0.35, $Li_{0.65}Ni_{1.35}O_2$) we see a reduction half way towards the state of NiO, i.e. we can conclude that the oxidation state is about 2.5, as suggested by Table S3.

Znominal	total Ni from	z from	Chemical	Ni oxidation
	diffraction	diffraction	composition	state
1			NiO	2.00
0.35	1.353	0.353	$Li_{0.647}Ni_{1.353}O_2$	2.48
0.3	1.298	0.298	$Li_{0.702}Ni_{1.298}O_2$	2.54
0.25	1.256	0.256	Li _{0.744} Ni _{1.256} O ₂	2.59
0.2	1.211	0.211	$Li_{0.789}Ni_{1.211}O_2$	2.65
0.15	1.156	0.156	$Li_{0.844}Ni_{1.156}O_2$	2.73
0.1	1.122	0.122	$Li_{0.878}Ni_{1.122}O_2$	2.78
0.05	1.065	0.065	$Li_{0.935}Ni_{1.065}O_2$	2.88
0.01	1.041	0.041	$Li_{0.959}Ni_{1.041}O_2$	2.92
-0.01	1.023	0.023	Li _{0.977} Ni _{1.023} O ₂	2.96
-0.05	1.008	0.008	$Li_{0.992}Ni_{1.008}O_2$	2.98

Table S3: The calculated Ni oxidation state as a function of chemical composition.

Figure S4: a) Ni K edge XAS spectra of $Li_{1-z}Ni_{1+z}O_2$ (-0.05 < z < 0.35) and b) edge position as a function of nominal z, where NiO has z = 1.

Magnetometry

Figure S5: Molar magnetic susceptibility vs. temperature curves for $Li_{1-2}Ni_{1+z}O_2$ for -0.05 $\leq z \leq$ 0.05 range.

Figure S6: Molar magnetic susceptibility vs. temperature curves for $Li_{1-z}Ni_{1+z}O_2$ for $0.10 \le z \le 0.35$ range.

Figure S7: Magnetic moment vs. magnetic field curves measured at 2 K for $Li_{1-z}Ni_{1+z}O_2$ for $-0.05 \le z \le 0.05$ range.

Figure S8: Magnetic moment vs. magnetic field curves measured at 2 K for $Li_{1-2}Ni_{1+z}O_2$ for $0.10 \le z \le 0.35$ range.