Supporting information: The role of free volume, hydrogen bonds, and crosslinks on physical aging in polymers of intrinsic microporosity (PIMs)

Taigyu Joo,^a Katherine Mizrahi Rodriguez,^b Hyunhee Lee, ^a Durga Acharya,^c Cara M. Doherty,^c and Zachary P. Smith ^{a,*}

^a Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States

^b Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States

^c The Commonwealth Scientific and Industrial Research Organization (CSIRO) Manufacturing,
 Private Bag 10, Clayton South 3169, Victoria, Australia

* Corresponding Author. Email address: <u>zpsmith@mit.edu</u>; Postal address: Massachusetts Institute of Technology, Department of Chemical Engineering, 77 Massachusetts Avenue, Room 66-466, Cambridge, MA, USA 02139-4307

Table of Contents

1.	Chemical synthesis, film fabrication, and post-synthetic modifications	3
1	1.1. Materials	3
1	1.2. Monomer purification, PIM-1 synthesis, and film fabrication	3
1	1.3. Post-synthetic modifications (PIM-NH ₂ and PIM-NH ₂ -FVM)	5
2.	Pure-gas permeation experiments	8
3.	Pure-gas permeation experiment - reproducibility test	13
4.	Pure-gas sorption experiments	17
5.	Effective diffusivity and sorption coefficient data	22
6.	Variable-temperature permeation experiments	23
7.	Fractional free volume (FFV) dependence on permeability changes on a nor	malized
sca	ıle	25
8.	Wide-angle X-ray scattering (WAXS)	27
9.	Positron anihillation lifetime spectroscopy (PALS)	
10.	References	

1. Chemical synthesis, film fabrication, and post-synthetic modifications

1.1. Materials

Methanol (\geq 99.9%), ethanol (pure, non-denatured), dichloromethane (DCM, \geq 99.8%, stabilized with amylene), dimethylacetamide (DMAc, \geq 99.8%, anhydrous), 1-methyl-2-pyrrolidinone (NMP, \geq 99.5%, anhydrous), chloroform (\geq 99.9%, amylenes as stabilizer), toluene (\geq 99.8%, anhydrous), pyridine (\geq 99.9%), borane dimethyl sulfide complex solution (5.0 M in diethyl ether), hydrochloric acid (HCl, 37%), potassium carbonate (K₂CO₃, \geq 99%), sodium hydroxide (NaOH, \geq 98%, anhydrous pellets), and di-tert-butyl-dicarbonate (DTBDC, \geq 99%) were purchased from *Millipore Sigma* and used as received without further purification. The PIM-1 monomers, 5,5',6,6'-tetrahydroxy-3,3,3',3'-tetramethyl-1,1'-spirobisindane (TTSBI, 96%) and tetrafluoroterepthalonitrile (TFTPN, 99%) were also purchased from *Millipore Sigma*, and they were purified using recrystallization and vacuum sublimation. H₂ (UHP300 99.999%), CH₄ (UHP300 99.999%), N₂ (UHP300 99.999%), and O₂ (UHP300 99.994%) were purchased from *Airgas*.

1.2. Monomer purification, PIM-1 synthesis, and film fabrication

TFTPN was purified using vacuum sublimation at 140–150 °C for approximately 2 h. TTSBI was purified by recrystallizing in methanol. To perform the recrystallization, 10 g of TTSBI was dissolved in 100 ml of methanol. The solution was concentrated by boiling until approximately half of the solution evaporated. After cooling the concentrated solution to approximately 40 °C, 20 ml of DCM was added and left to cool naturally in a chemical fume hood overnight. Fine white flakes that formed in the solution were vacuum filtered and dried in a vacuum oven at 60 °C overnight.

PIM-1 was synthesized via high-temperature step polymerization as previously reported,¹ but with slight modifications. TTSBI (5.106 g; 15 mmol), TFTPN (3.003 g; 15 mmol), and 30 ml of DMAc were stirred in a 3-neck round bottom flask at 300 rpm. After the monomers were completely dissolved, K₂CO₃ (6.210 g; 45 mmol) was added to the reaction flask, and the flask was submerged in a pre-heated oil bath at 160 °C. A Dean-Stark apparatus filled with toluene was attached to the flask, and a total of 25 ml of toluene was added to the reaction flask when the polymerization solution became too viscous to continue stirring. This addition of toluene was important to keep the reaction solution homogeneous, maintain solubility, and avoid crosslinking. After 60 min of the reaction, the flask was removed from the oil bath, and an additional 30 ml of toluene was added. The reaction solution was then poured slowly into methanol to precipitate the synthesized PIM-1. The precipitated PIM-1 was vacuum filtered and dried overnight at 130 °C. To purify PIM-1, it was dissolved again in 100 ml of chloroform and then reprecipitated in methanol. This purification step was repeated three times to remove residual solvent and low molecular weight polymerization products. Finally, the polymer was boiled in hot water for 5 h to remove salt, and it was dried in a vacuum oven at 130 °C overnight.

PIM-1 films were prepared using a standard solution-casting procedure. The PIM-1 polymer (0.1 g) was dissolved in 3.3 ml of chloroform (3 wt/v %) and stirred for 30 minutes. The solution was then filtered using a 0.45 μ m syringe filter (*VWR*, 76479-008) into a 5 cm diameter STERIPLAN[®] glass Petri dish (237554008, DWK Life Sciences). The glass dish was covered with a piece of aluminum foil and a Petri dish cover to slow down the evaporation of chloroform. The solution was left inside a chemical fume hood for 72 h. The film was then detached from the Petri dish and dried in a vacuum oven at 130 °C for 12 h.

1.3. Post-synthetic modifications (PIM-NH₂ and PIM-NH₂-FVM)

PIM-NH₂ and PIM-NH₂-FVM films were synthesized using solid-state post-synthetic functionalization processes as previously reported.² In short, the cast PIM-1 films were submerged in excess 5.0 M borane dimethyl sulfide complex solution at 45 °C for 5 h. The resulting films were immersed in 1.0 M methanolic HCl for 8 h, and then the films were neutralized in a 5 wt% NaOH/DI water solution for 6 h. After the neutralization step, the films were repeatedly immersed and washed in DI water to remove NaOH from the films. The resulting PIM-NH₂ films were then dried in a vacuum oven at 130 °C for 12 h.

For PIM-tBOC, the PIM-NH₂ films were subsequently functionalized with tBOC groups by immersing approximately 0.3 g of the films in 40 ml of NMP, 686 µl of pyridine, and 2 ml of DTBDC at 35 °C for 24 h. The resulting PIM-tBOC films were washed with MeOH and DI water and then dried in a vacuum oven at 130 °C for 12 h. The dried PIM-tBOC films were treated in a vacuum oven at 250 °C for 27 h to thermally remove the tBOC groups to form PIM-NH₂-FVM. PIM-NH₂ films in this study were thermally annealed at 250 °C for 27 h to directly compare the effect of FVM with the non-protected analogues that experienced identical thermal processing. PIM-1 films only underwent the normal drying procedure at 130 °C for 12 h to serve as a benchmark polymer that has comparable drying conditions to other PIM-1 samples studied in the literature.

Density	Solvent	Reference
1.21 ± 0.06	Water	This work
1.11	Water	2
1.18	Ethanol	9
1.1	Hexane	10
1.09	Hexane	11
1.112	-	12
1.1	Hexane	13
1.059	Ethanol	14
1.06	Ethanol	15
1.063	Ethanol	16
1.06	Alcohol	17
1.066	Fluorinert FC 77	18

 Table S1. Compiled density of PIM-1 using Archimedes' principle in literature.

Polymer	Density	Note	
	1.21 ± 0.06	Water	This work
	1.11 ± 0.02	Water	
DIN/ 1	1.22 ± 0.02	Water	
P11V1-1	1.18 ± 0.02	Heptane	
	1.14 ± 0.02	Decane	
	1.14 ± 0.01	Hexadecane	
	1.28 ± 0.02	Water	This work
	1.18 ± 0.02	Water	
	1.32 ± 0.02	Water	
DIM NU	1.10 ± 0.02	Water	
$\mathbf{P}\mathbf{I}\mathbf{V}\mathbf{I}$ - $\mathbf{N}\mathbf{H}_2$	1.15 ± 0.01	Heptane	
	1.13 ± 0.01	Heptane	
	1.16 ± 0.01	Decane	
	1.15 ± 0.01	Hexadecane	
	1.25 ± 0.02	Water	This work
F 11VI-INF12-F V IVI	1.15 ± 0.04	Water	

 Table S2. Compiled density of PIM-1 derivatives measured in our lab using Archimedes'

 principle.

2. Pure-gas permeation experiments

Table S3. Kinetic diameter of gases considered in this work.

Gas	<i>d</i> (Å)
H_2	2.89
O_2	3.46
N_2	3.64
CH_4	3.80

Figure S1. Comparison of aging behavior on an absolute scale by tracking pure-gas permeabilities of (a) H_2 , (b) O_2 , (c) N_2 , and (d) CH_4 up to approximately 10,000 h. The linear fits of the experimental data on a log–log scale are shown in the dashed lines along with their R^2 values.

Delement	Aging		Permeabili	ity (barrer)		Selectivity			
Polymer	time ^a (h)	H_2	O_2	N_2	CH_4	$\mathrm{H_2/CH_4}$	O_2/N_2		
	Fresh ^b	3380 ± 90	$1250~\pm~60$	$400~\pm~30$	590 ± 80	$5.9\ \pm\ 0.8$	3.1 ± 0.1		
	33	2660 ± 70	$1020\ \pm\ 30$	$350~\pm~10$	590 ± 10	$4.5\ \pm\ 0.2$	2.9 ± 0.1		
	82	2640 ± 70	$1000 \ \pm \ 30$	$340~\pm~10$	$570 \pm \ 10$	$4.6\ \pm\ 0.2$	2.9 ± 0.1		
DIM 1	206	2610 ± 70	$990~\pm~~30$	$340~\pm~10$	550 ± 10	$4.7\ \pm\ 0.2$	2.9 ± 0.1		
F 11V1-1	419	2550 ± 70	$940~\pm~20$	$310~\pm~10$	500 ± 10	$5.1\ \pm\ 0.2$	3.0 ± 0.1		
	948	2320 ± 60	$800~\pm~20$	$250~\pm~10$	$380 \pm \ 10^{b}$	$6.1\ \pm\ 0.2$	3.3 ± 0.1		
	2824	2020 ± 50	$700~\pm~20$	$220~\pm~10$	$330 \pm \ 10$	$6.1\ \pm\ 0.2$	3.3 ± 0.1		
	10024	1980 ± 50	$660~\pm~20$	$200~\pm~10$	$300 \pm \ 10$	$6.7\ \pm\ 0.2$	3.4 ± 0.1		
	Fresh ^b	1450 ± 70	$430~\pm~10$	134 ± 9	$210\pm~20$	$6.8\ \pm\ 0.6$	3.2 ± 0.1		
	31	1680 ± 40	550 ± 10	180 ± 10	300 ± 10	$5.6\ \pm\ 0.2$	3.1 ± 0.1		
	84	1650 ± 40	$520~\pm~10$	160 ± 10	$260 \pm \ 10$	$6.3\ \pm\ 0.2$	3.2 ± 0.1		
DIM NII	200	1610 ± 40	$490~\pm~10$	$150~\pm~10$	220 ± 10	$7.4\ \pm\ 0.2$	3.4 ± 0.1		
PINI-INH ₂	441	1570 ± 40	$460~\pm~10$	$130~\pm~10$	180 ± 10	$8.6\ \pm\ 0.3$	3.5 ± 0.1		
	995	1540 ± 40	$430~\pm~10$	$110~\pm~10$	150 ± 10	10 ± 1	3.7 ± 0.1		
	2815	1500 ± 40	$380~\pm~10$	94 ± 2	110 ± 10	13 ± 1	4.0 ± 0.1		
	10018	1390 ± 30	$330~\pm~10$	78 ± 2	90 ± 2	16 ± 1	4.3 ± 0.1		
	Fresh ^b	2000 ± 200	$500~\pm~100$	120 ± 30	170 ± 50	13 ± 2	4.6 ± 0.5		
	37	2170 ± 90	$600~\pm~~30$	$170~\pm~10$	240 ± 10	$8.9\ \pm\ 0.2$	3.6 ± 0.2		
	82	2160 ± 90	$580~\pm~20$	$160~\pm~10$	220 ± 10	$9.7\ \pm\ 0.2$	3.6 ± 0.2		
PIM-NH ₂ -	204	2110 ± 90	$530~\pm~20$	$130~\pm~10$	170 ± 10	12 ± 1	4.0 ± 0.2		
FVM	446	2050 ± 90	$480~\pm~20$	$120~\pm~10$	140 ± 10	14 ± 1	4.2 ± 0.2		
	1006	2020 ± 90	$420~\pm~20$	92 ± 4	$110 \pm \ 10$	19 ± 1	4.6 ± 0.3		
	2819	2010 ± 120	$360~\pm~20$	71 ± 4	75 ± 4	27 ± 1	5.1 ± 0.4		
	9998	1980 ± 120	$330~\pm~20$	60 ± 3	62 ± 4	32 ± 3	5.5 ± 0.5		

Table S4. Gas permeability and ideal selectivity of tested gases.

The errors are calculated from propagation of uncertainty.

^aThe presented time is the aging time at the start of hydrogen permeation test. All tests were completed within 6 hours unless indicated otherwise.

^bPermeability and selectivity of polymer samples from the previous study² are included for comparison.

^cMethane was retested for this point at a later time (aging time = 1,859 h).

Figure S2. Comparison of selectivity as a function of time up to 10,000 h on an absolute scale for (a) H_2/CH_4 and (b) O_2/N_2 . The linear fits of the experimental data on a log–log scale are shown in the dashed lines along with their R^2 values.

Figure S3. Comparison of aging behavior presented in (a) H_2/CH_4 and (b) O_2/N_2 upper bound plots.

Polymer	Gas	β_P
	H_2	0.060
PIM-1	O_2	0.086
	N_2	0.117
	CH_4	0.135
	H_2	0.032
DIM NH	O_2	0.088
Г IIVI-INП2	N_2	0.149
	CH_4	0.219
	H_2	0.018
DIM NH EVM	O_2	0.118
	N_2	0.203
	CH_4	0.266

Table S5. A summary of permeability aging rate constants (β_P) extracted from aging curves for H₂, O₂, N₂, and CH₄.

Table S6. A summary of slopes obtained from linear fits of aging rate constants (β_P) in a semilong scale, highlighting the influence of penetrant size on physical aging behavior.

Polymer	Slope	Ref
PIM-NH ₂	0.137	This work
PIM-NH ₂ -FVM	0.199	This work
	0.058	This work
	0.062	3
	0.098	4
PIM-1	0.057	5
	0.039	6
	0.089	7
	0.091	8

Figure S4. Permeability aging rate constants (β_P) of PIM-1 extracted from aging curves in literature for H₂, O₂, N₂, and CH₄.³⁻⁸ The dashed lines are linear fits of β_P on a semi-log scale.

3. Pure-gas permeation experiment - reproducibility test

Table S7. A summary of information on the replicate samples, including the number of samples tested, thickness, density, fractional free volume (FFV) calculated from the group contribution method, drying conditions, and post-treatment conditions. All uncertainties are noted as standard deviations.

Polymer	PIM-1	PIM-NH ₂	PIM-NH ₂ -FVM
Number of samples	3	4	3
Thickness (µm)	40.6 ± 3.6	46.0 ± 8.0	55.9 ± 9.1
Density (g/cm ³)	1.21 ± 0.06	1.28 ± 0.02	1.25 ± 0.02
$\mathit{FFV}_{group^{\mathrm{a}}}$	0.23 ± 0.04	0.16 ± 0.01	0.18 ± 0.01
Drying conditions	Vacuum, 130 °C, 12 h	Vacuum, 130 °C, 12 h	Vacuum, 130 °C, 12 h
Post-treatment conditions	n/a	Vacuum, 250 °C, 27 h	Vacuum, 250 °C, 27 h

^aLight urea crosslinks were not considered in the calculation.

Average permeability (barrer) Average selectivity Aging Polymer time^a (h) CH_4 H_2 O_2 N_2 H_2/CH_4 O_2/N_2 32 ± 2 6.9 ± 2.3 3.3 ± 0.4 3350 ± 530 $1160\ \pm\ 190$ $350~\pm~70$ 520 ± 130 81 ± 2 $1140\ \pm 170$ 7.1 ± 2.3 3.4 ± 0.4 3310 ± 510 $340~\pm~60$ 500 ± 120 PIM-1 $6.8~\pm~1.8$ 207 ± 1 3260 ± 490 $1130\ \pm 140$ $340\ \pm\ 40$ $500 \pm$ 90 $3.4~\pm~0.3$ $460\ \pm$ $427~\pm~10$ 3170 ± 480 $1080\ \pm\ 140$ 70 $7.0\ \pm\ 1.5$ $3.4~\pm~0.3$ $320\ \pm\ 30$ $962\,\pm\,21$ 2900 ± 470 $870~\pm~90$ $230\ \pm\ 20$ $320 \pm$ 50^b $9.4~\pm~2.4$ $3.8~\pm~0.4$ 31 ± 1 760 ± 170 6.5 ± 0.7 3.2 ± 0.1 2360 ± 500 $240~\pm~50$ $360 \pm$ 70 87 ± 7 $7.3\ \pm\ 0.9$ 2300 ± 500 $710\ \pm 160$ $220~\pm~50$ $320 \pm$ 70 3.3 ± 0.1 PIM-NH₂ $213~\pm~11$ 2260 ± 520 $680\ \pm 170$ $200~\pm~60$ $270 \pm$ 80 $8.4~\pm~1.2$ $3.5~\pm~0.2$ $428~\pm~~8$ $9.4~\pm~1.3$ 3.6 ± 0.1 2230 ± 540 $650\ \pm 180$ $180\ \pm\ 50$ $240 \pm$ 80 $1004~\pm~15$ 2170 ± 530 $610\ \pm 170$ $170~\pm~50$ $220 \pm$ 70 10 ± 1 $3.7~\pm~0.1$ 35 ± 2 3110 ± 880 $840\ \pm 270$ $220~\pm~80$ $300~\pm~120$ 11 ± 3 $3.8~\pm~0.3$ PIM-NH₂- 81 ± 1 $4.0~\pm~0.5$ 3040 ± 890 $780\ \pm 290$ $200~\pm~90$ $260~\pm~130$ 13 ± 5 $423~\pm~19$ 2950 ± 850 $670\ \pm 290$ $190~\pm~110$ 20 ± 9 $4.6~\pm~0.7$ FVM $160~\pm~80$ $1007~\pm 8$ 2810 ± 740 $590\ \pm 260$ $130~\pm~70$ $130~\pm\quad 70$ 24 ± 11 $4.8~\pm~0.7$

Table S8. Gas permeability and ideal selectivity of tested gases for the replicate samples. All uncertainties are noted as standard deviations.

The error bars indicate standard deviations.

^aThe presented time is the aging time at the start of hydrogen permeation test. All tests were completed within 6 hours unless indicated otherwise.

^bMethane was retested for this point for one sample at a later time (aging time = $1,267 \pm 420$ h).

Figure S5. Comparison of (a) H_2 , (b) O_2 , (c) N_2 , and (d) CH_4 aging behavior on a normalized scale for the replicate samples. The linear fits of the experimental data on a log–log scale are shown in the dashed lines along with their R^2 values.

Figure S6. Comparison of (a) H_2/CH_4 and (b) O_2/N_2 permselectivity as a function of time on a normalized scale for the replicate samples. The linear fits of the experimental data on a log–log scale are shown in the dashed lines along with their R^2 values.

4. Pure-gas sorption experiments

Figure S7. Sorption isotherms comparison and dual-mode sorption fittings for (a) O_2 , (b) N_2 , and (c) CH_4 for fresh films of PIM-1, PIM-NH₂, and PIM-NH₂-FVM measured at 35 °C.

Figure S8. Sorption isotherm comparison and dual-mode sorption fittings for (a) O_2 , (b) N_2 , and (c) CH₄ for PIM-1 at three different aging times measured at 35 °C.

Figure S9. Sorption isotherm comparison and dual-mode sorption fittings for (a) O_2 , (b) N_2 , and (c) CH_4 for PIM-NH₂ at three different aging time measured at 35 °C.

Figure S10. Sorption isotherm comparison and dual-mode sorption fittings for (a) O_2 , (b) N_2 , and (c) CH_4 for PIM-NH₂-FVM at three different aging time measured at 35 °C.

Polymer	Gas		PIM-1			PIM-NH	M-NH ₂ PIM-NH ₂ -F				
		22 h	1251 h	2233 h	27 h	1059 h	2214 h	35 h	723 h	2234 h	
k_D	O ₂	0.39	0.37	0.35	0.41	0.34	0.35	0.44	0.43	0.36	
$(cm_{STP}^{3} cm_{pol}^{-3})$	N_2	0.25	0.21	0.21	0.28	0.23	0.24	0.30	0.28	0.22	
<i>atm</i> ⁻¹)	CH_4	0.70	0.73	0.67	0.65	0.54	0.57	0.70	0.74	0.66	
<u> </u>	O ₂	62.3	63.7	63.7	47.3	52.9	48.7	57.0	56.4	63.3	
C_H	N_2	53.1	55.8	56.1	39.1	38.7	42.4	46.7	51.2	53.8	
$(cm_{STP}^{s} cm_{pol}^{s})$	CH_4	58.1	55.0	57.1	52.2	51.8	49.7	56.8	55.9	57.8	
b	O ₂	0.035	0.033	0.034	0.043	0.038	0.040	0.041	0.040	0.037	
D 1.	N_2	0.038	0.037	0.035	0.046	0.046	0.040	0.048	0.043	0.041	
(<i>atm</i> ⁻¹)	CH_4	0.151	0.153	0.148	0.177	0.174	0.169	0.190	0.188	0.182	

Table S9. Dual-mode sorption (DMS) model parameters fitted to experimental data.

The presented time is the aging time at the start of oxygen sorption test.

5. Effective diffusivity and sorption coefficient data

Polymer	Aging time ^a	Diffu (1	sion coeffic 0 ⁻⁷ cm ² s ⁻¹	cient ^b	Sorpti cm ³ _{STP}	on coeffic cm_{pol}^{-3} at	n coefficient ^c ($cm_{pol}^{-3} atm^{-1}$)		
	(h) -	O ₂	N ₂	CH_4	O ₂	N_2	CH ₄		
DIM 1	22	29.4	12.0	5.94	2.50	2.18	8.29		
F 11V1-1	2233	23.6	8.41	3.48	2.42	2.10	8.01		
DIM NU	27	16.2	6.09	2.66	2.36	2.01	8.50		
F 11V1-1NH2	2314	13.2	3.99	1.21	2.23	1.88	7.75		
DIM NH EVM	35	15.3	4.72	1.90	2.69	2.42	9.76		
1 11V1-1V 11 2-F V IVI	2234	11.1	2.56	0.70	2.64	2.35	9.52		

Table S10. Diffusion coefficients and sorption coefficients of H_2 , O_2 , N_2 , and CH_4 for the polymers studied in this work.

^aThe presented time is the aging time at the start of oxygen sorption test.

^bPermeabilities at corresponding sorption test times were calculated from the linear fits of the experimental data in log–log scale, shown in **Figure 2**. The diffusion coefficients were then calculated using the sorption–diffusion model.

^cThe sorption coefficients were calculated using the dual-mode sorption model, using the fitting parameters in **Table S9** and the testing pressure of 15 psia.

6. Variable-temperature permeation experiments

Figure S11. Comparison of Arrhenius plots for fresh and aged (a) PIM-NH₂ and (b) PIM-NH₂-FVM membrane films. The lighter and filled symbols indicate fresh samples and the darker and unfilled symbols indicate aged samples (710 h).

Figure S12. Comparison of activation energy of permeation for fresh and aged PIM-NH₂ and PIM-NH₂-FVM films. The lighter colors indicate fresh samples, and the darker colors indicate aged samples (710 h).

	Aging	Tomn		Permeabil		Average selectivity					
Polymer	time ^a (h)	(°C)	H_2	O ₂	N_2	CH_4	H_2/CH_4	O_2/N_2			
		35	$2520~\pm~70$	750 ± 20	$210~\pm~10$	290 ± 10	8.7 ± 0.3	$3.6\ \pm 0.1$			
	33	45	$2510~\pm~70$	750 ± 20	$230~\pm~10$	330 ± 10	7.5 ± 0.3	$3.2\ \pm\ 0.1$			
	55	55	$2530~\pm~70$	750 ± 20	$250~\pm~10$	390 ± 10	6.6 ± 0.2	$3.0\ \pm\ 0.1$			
DIM NH		65	$2550~\pm~70$	750 ± 20	$260~\pm~10$	430 ± 10	6.0 ± 0.2	$2.9\ \pm\ 0.1$			
F IIVI-INII ₂		35	$2290~\pm~60$	590 ± 20	$140~\pm~10$	170 ± 10	13.9 ± 0.5	$4.1\ \pm\ 0.2$			
	710	45	$2330~\pm~60$	620 ± 20	$170~\pm~10$	210 ± 10	11.3 ± 0.4	$3.7\ \pm\ 0.1$			
	/10	55	$2380~\pm~70$	630 ± 20	$190~\pm~10$	250 ± 10	9.4 ± 0.4	$3.4\ \pm\ 0.1$			
		65	$2410~\pm~70$	640 ± 20	$210~\pm~10$	310 ± 10	7.8 ± 0.3	$3.1\ \pm\ 0.1$			
		35	$3200~\pm~60$	890 ± 20	$250~\pm~20$	320 ± 10	10.0 ± 0.3	$3.6\ \pm\ 0.1$			
	20	45	$3240~\pm~60$	950 ± 20	$280~\pm~10$	380 ± 10	8.6 ± 0.2	$3.4\ \pm\ 0.1$			
	20	55	$3270~\pm~60$	950 ± 20	$310~\pm~10$	440 ± 10	7.4 ± 0.2	$3.1\ \pm\ 0.1$			
PIM-NH ₂ -		65	$3340~\pm~60$	940 ± 20	$330~\pm~10$	500 ± 10	6.6 ± 0.2	$2.9\ \pm\ 0.1$			
FVM		35	$2910~\pm~60$	610 ± 10	$120~\pm~10$	130 ± 10	22.7 ± 0.6	$4.9\ \pm\ 0.1$			
	710	45	$2960~\pm~60$	660 ± 10	$150~\pm~10$	170 ± 10	17.5 ± 0.5	$4.3\ \pm\ 0.1$			
	/10	55	$3020~\pm~60$	710 ± 10	$190~\pm~10$	220 ± 10	13.7 ± 0.4	$3.8\ \pm\ 0.1$			
		65	$3070~\pm~60$	750 ± 10	$220~\pm~10$	280 ± 10	11.0 ± 0.3	$3.4\ \pm 0.1$			

 Table S11. Gas permeability and ideal selectivity of tested gases for the variable-temperature study.

^aThe presented time is the aging time at the start of hydrogen permeation test. All tests were completed within 4 hours unless indicated otherwise.

Table	S12.	Activation	energy of	perr	neation	of H ₂ ,	O ₂ ,	N ₂ ,	and	CH_4	for	the	poly	mers	studie	d i	n
-------	------	------------	-----------	------	---------	---------------------	------------------	------------------	-----	--------	-----	-----	------	------	--------	-----	---

this work.

Polymer	Aging time ^a (h) -	Activation energy of permeation (kJ mol ⁻¹)				
		H_2	O ₂	N_2	CH_4	
DIM NII	33	0.166	-0.095	2.632	4.883	
F HVI-INH ₂	710	0.678	1.152	4.959	7.853	
PIM-NH ₂ -	20	0.508	0.657	3.450	5.761	
FVM	710	0.690	2.575	7.111	9.791	

^aThe presented time is the aging time at the start of hydrogen permeation test. All tests were completed within 4 hours unless indicated otherwise.

7. Fractional free volume (FFV) dependence on permeability changes on a normalized scale

Permeability (P) and fractional free volume (FFV) are typically correlated by the following equation:¹⁹

$$P = Ae^{-\frac{B}{FFV}} \#(S1)$$

where A and B are gas-specific constants. By using this correlation, we can derive an equation for the normalized permeability as follows:

$$\frac{P}{P_0} = \exp\left(\frac{B}{FFV_0} - \frac{B}{FFV}\right) \#(S2)$$

where FFV₀ is the initial fractional free volume and FFV is the fractional free volume of an aged sample. By using this relationship between the normalized permeability and FFV₀, we can generate sensitivity plots of how normalized permeability, which is directly related to percent change, is impacted by the initial FFV. **Figure S13** presents examples of these sensitivity plots generated for hydrogen (B = 1.645) and methane gas (B = 2.369).¹⁹ As shown in the figure, the contour lines are slanted, suggesting that initial fractional free volume indeed matters to the amount of decrease observed for normalized permeability. Additionally, we can also observe that the size of gas molecules also affects in these sensitivity plots. For example, consider two polymers with FFV₀ of 0.3 and 0.2. If both polymers' FFV decrease by 0.01 due to physical aging, the normalized permeability of the polymer with FFV₀ = 0.3 will be approximately 0.84 for hydrogen and 0.76 for methane, whereas those for the polymer with FFV₀ = 0.2 will be approximately 0.67 for hydrogen and 0.54 for methane. This suggests that the polymer with lower initial FFV will generally show a larger drop in a normalized scale (e.g., PIM-NH₂ and PIM-NH₂-FVM), and it is difficult to completely isolate the effect of physical aging factors (e.g., hydrogen bonding and crosslinking) from this effect when comparing different samples with different initial FFV. Thus, physical aging should be studied both in terms of gas transport properties as well as free volume (or packing density). Similar sensitivity plots can be produced for diffusivity since diffusivity is typically correlated by an equation with an identical form to that of *Eq. S1*:²⁰

Figure S13. Sensitivity plots of normalized permeability to initial fractional free volume (FFV_0) for (a) hydrogen and (b) methane. Y-axis is the FFV_0 , and x-axis is the absolute amount of the fractional free volume decreased with aging.

8. Wide-angle X-ray scattering (WAXS)

Polymer	Aging	í	<i>d</i> -spacing (Å)		Changes in <i>d</i> -spacing (%)			
	time ^a (h)	Peak 1	Peak 2	Peak 3	Peak 1	Peak 2	Peak 3	
PIM-1	3	6.84	4.96	3.83	1.52	-1.33	-1.47	
	1369	6.73	4.89	3.77	-1.55			
DIM NH	5	6.71	4.91	3.89	_1.27	_1.28	_1 70	
1 1101	F IIVI-INII 2	1377	6.62	4.85	3.82	1.2/	1.20	1.70
PIM-	-NH ₂ -	4	6.67	4.96	3.85	-2.00	-2 40	-1.95
FV	/M	1369	6.53	4.83	3.78	2.09	2.49	
aThe	presented	time	is the	aging time	e at	the start	of WA	XS experir

 Table S13. d-spacing calculated from WAXS patterns.

9. Positron anihillation lifetime spectroscopy (PALS)

Table S14. A summary of parameters obtained from PALS, including *o*-Ps lifetimes ($^{\tau_3}$ and $^{\tau_4}$) and intensities (I_3 and I_4). PALS experiments were performed on the samples from our previous study² that had been aged for approximately 20,000 h (833 days).

		PIM-1	PIM-NH ₂	PIM-NH ₂ -FVM	
Aging time ^a (h)		19,170	21,050	19,150	
Fresh ^b	$\tau_{3 (ns)}$	$2.4 \pm \ 0.2$	$2.2 \qquad \pm \ 0.1$	2.3 ± 0.1	
	τ_4 (ns)	$7.17 \hspace{0.1in} \pm \hspace{0.1in} 0.05$	$5.71 \pm \ 0.04$	5.7 ± 0.1	
	I _{3 (%)}	5.8 ± 0.2	5.3 ± 0.2	$6.3 \pm \ 0.4$	
	I _{4 (%)}	$17.9 \pm \ 0.3$	$20.7 \pm \ 0.3$	$20.2 \pm \ 0.4$	
Aged	τ_{3} (ns)	1.5 ± 0.1	1.7 ± 0.1	1.7 ± 0.1	
	τ_4 (ns)	$6.59 \hspace{0.2cm} \pm \hspace{0.2cm} 0.04$	$5.37 \pm \ 0.03$	$5.57 \pm 0.04 $	
	I _{3 (%)}	5.8 ± 0.4	5.6 ± 0.2	5.8 ± 0.2	
	I _{4 (%)}	$15.1 \pm \ 0.2$	$22.2 \pm \ 0.3$	$18.9 \pm \ 0.3$	

^aThe presented time is the aging time at the start of PALS experiment.

^bPALS data for fresh samples are from previous study.²

10. References

- 1 S. Thomas, I. Pinnau, N. Du and M. D. Guiver, J. Membr. Sci., 2009, 333, 125–131.
- 2 K. Mizrahi Rodriguez, S. Lin, A. X. Wu, G. Han, J. J. Teesdale, C. M. Doherty and Z. P. Smith, Angew. Chem. Int. Ed., 2021, 60, 6593–6599.
- 3 R. R. Tiwari, J. Jin, B. D. Freeman and D. R. Paul, J. Membr. Sci., 2017, 537, 362–371.
- 4 F. Y. Li and T. S. Chung, Int. J. Hydrog. Energy, 2013, 38, 9786–9793.
- 5 R. Hou, S. J. D. Smith, C. D. Wood, R. J. Mulder, C. H. Lau, H. Wang and M. R. Hill, *ACS Appl. Mater. Interfaces*, 2019, **11**, 6502–6511.
- 6 Q. Song, S. Cao, R. H. Pritchard, B. Ghalei, S. A. Al-Muhtaseb, E. M. Terentjev, A. K. Cheetham and E. Sivaniah, *Nat. Commun.*, 2014, **5**, 4813.
- 7 C. A. Scholes and S. Kanehashi, *Membranes*, 2019, 9, 41.
- 8 P. Bernardo, F. Bazzarelli, F. Tasselli, G. Clarizia, C. R. Mason, L. Maynard-Atem, P. M. Budd, M. Lanč, K. Pilnáček, O. Vopička, K. Friess, D. Fritsch, Y. P. Yampolskii, V. Shantarovich and J. C. Jansen, *Polymer*, 2017, **113**, 283–294.
- 9 X. Wu, Y. Ren, G. Sui, G. Wang, G. Xu, L. Yang, Y. Wu, G. He, N. Nasir, H. Wu and Z. Jiang, *AIChE J.*, 2020, **66**, e16800.
- 10 W. F. Yong, F. Y. Li, Y. C. Xiao, P. Li, K. P. Pramoda, Y. W. Tong and T. S. Chung, *J. Membr. Sci.*, 2012, **407–408**, 47–57.
- 11 L. Hao, P. Li and T. S. Chung, J. Membr. Sci., 2014, 453, 614–623.
- 12 X. M. Wu, Q. G. Zhang, P. J. Lin, Y. Qu, A. M. Zhu and Q. L. Liu, *J. Membr. Sci.*, 2015, **493**, 147–155.
- 13 C. Z. Liang, J. T. Liu, J. Y. Lai and T. S. Chung, J. Membr. Sci., 2018, 563, 93–106.
- 14 X. Chen, Z. Zhang, L. Wu, X. Liu, S. Xu, J. E. Efome, X. Zhang and N. Li, *ACS Appl. Polym. Mater.*, 2020, **2**, 987–995.
- N. Du, G. P. Robertson, I. Pinnau and M. D. Guiver, *Macromolecules*, 2010, 43, 8580– 8587.
- 16 N. Du, G. P. Robertson, J. Song, I. Pinnau, S. Thomas and M. D. Guiver, *Macromolecules*, 2008, **41**, 9656–9662.
- 17 Z. G. Wang, X. Liu, D. Wang and J. Jin, *Polym. Chem.*, 2014, 5, 2793–2800.
- 18 M. M. Khan, S. Shishatskiy and V. Filiz, *Membranes*, 2018, **8**, 1.
- 19 A. X. Wu, S. Lin, K. Mizrahi Rodriguez, F. M. Benedetti, T. Joo, A. F. Grosz, K. R. Storme, N. Roy, D. Syar and Z. P. Smith, *J. Membr. Sci.*, 2021, **636**, 119526.
- 20 D. F. Sanders, Z. P. Smith, R. Guo, L. M. Robeson, J. E. McGrath, D. R. Paul and B. D.

Freeman, Polymer, 2013, 54, 4729–4761.