Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Journal of Materials Chemistry A

Supporting information

Fluoroalkyl Iodide Additive for Li–O₂ Battery Electrolytes Enables Stable Cycle Life and High Reversibility

Min-Gi Jeong, ^{a,b}Hyun Ho Lee, ^aHyeon-Ji Shin,^{a,c} Yeseul Jeong, ^d Jang-Yeon Hwang, ^{e,f} Won-Jin Kwak, ^g Gwangseok Oh, ^h Wonkeun Kim, ^h Kyounghan Ryu, ^h Seungho Yu, ^{a,c} Hee-Dae Lim, ^a Minah Lee, ^a and Hun-Gi Jung ^{a,c,i,j,*}

^a Energy Storage Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea

^b Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08540, USA.

^c Division of Energy and Environmental Engineering, Korea University of Science and Technology, Daejeon 34113, Republic of Korea.

^d Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.

^e Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea

^f Department of Battery Engineering, Hanyang University, Seoul 04763, Republic of Korea

^g Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea.

^h Hyundai Motor Company, Uiwang 16082, Republic of Korea.

¹ KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea

^j Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea

Corresponding

Author's

E-mail:

hungi@kist.re.kr

Fig. S1. A schematic illustration representing the setup of the DEMS and the structure of a custom designed HS air type cell.

Fig. S2. Discharge–charge curves of rebuild $Li-O_2$ cells using (a) fresh electrolyte, (b) fresh anode, and (c) fresh cathode.

Fig. S3 XPS depth profiles of Li metal after 25 cycles in an Li– O_2 cell using 1 M LiNO₃/N,N-dimethylacetamide electrolyte.

Fig. S4 Digital photos of N,N-dimethylacetamide (DMA) and Li and the obtained Li metal weight after storage of Li metal in DMA for different time.

Fig. S5 Ab initio molecular dynamics calculations at 300 K of the dissociation of $CF_3(CF_2)_2I$ on the Li(100) surface.

Fig. S6 XPS depth profiles of I 3d spectra of Li metal after storage in $CF_3(CF_2)_2I$ -containing electrolyte.

Fig. S7 Three-electrode CV curves for an electrolyte composed of 0.2 M LiI + 1 M LiNO₃/N,Ndimethylacetamide.

Fig. S8. The ¹⁹F NMR spectrum of 0.2 M $CF_3(CF_2)_2I + 1$ M LiNO₃/DMA (a) before and (b) after reaction with Li metal.

Fig. S9. (a) Discharge–charge curves of Li–O₂ cell using 1 M LiNO₃/N,N-dimethylacetamide (DMA) (black) and 0.2 M CF₃(CF₂)₂I + 1 M LiNO₃ in DMA (red) at a current density of 0.5 mA cm⁻² until 2.0 V. (b) XRD patterns of the discharged cathode in 1 M LiNO₃/DMA and 0.2 M CF₃(CF₂)₂I + 1 M LiNO₃/DMA and (c), (d) the respective SEM images.

Fig. S10. Voltage profiles of a symmetric Li/Li cell cycled in 1 M LiNO₃/N,Ndimethylacetamide (DMA) (black) and 0.2 M $CF_3(CF_2)_2I + 1$ M LiNO₃/DMA (red) at a current density of 0.5 mA cm⁻² under O₂.

Fig. S11. Time–voltage profile of Li– O_2 cell using 0.2 M CF₃(CF₂)₂I + 1 M LiNO₃/N,Ndimethylacetamide under various current densities with a time limit of (a) 10 h and (b) 5 h.

Fig. S12. Discharge–charge curves of Li– O_2 cell rebuild using fresh 0.2 M CF₃(CF₂)₂I + 1 M LiNO₃/N,N-dimethylacetamide electrolyte.

Fig. S13. Integral gas evolution for O₂ determined by in situ differential electrochemical mass spectroscopy measurements using 1 M LiNO₃/N,N-dimethylacetamide (DMA) (black) and 0.2 M CF₃(CF₂)₂I + 1 M LiNO₃/DMA (red) during the charging process. The dashed line indicates the ideal oxidation of Li₂O₂ with an e^{-}/O^{2} value of 2.

Fig. S14. SEM images of (a) surface and (b) a cross-section of pristine Li metal. SEM images of (c) a cross-section and (e) surface of the Li metal after 25 cycles in an Li $-O_2$ cell using 1 M LiNO₃/N,N-dimethylacetamide electrolyte. (d) High-magnification SEM image of (c).

Fig. S15. SEM images of (a) surface and (b) a cross-section of Li metal after discharging to a capacity of 5 mA h cm⁻² using 0.2 M $CF_3(CF_2)_2I + 1$ M LiNO₃/N,N-dimethylacetamide electrolyte.