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Computational method

All the DFT calculations are performed by the Vienna Ab initio Simulation Package 

(VASP) [1] with the projector augmented wave (PAW) method [2]. The exchange-

functional is treated using the generalized gradient approximation (GGA) of Perdew-

Burke-Ernzerhof (PBE) [3] functional. The energy cutoff for the plane wave basis 

expansion was set to 400 eV and the force on each atom less than 0.05 eV/Å was set 

for convergence criterion of geometry relaxation. Partial occupancies of the 

Kohn−Sham orbitals were allowed using the Gaussian smearing method and a width of 

0.2 eV. The interface between RuO2 and Ru/PdRu was built, named as Ru-RuO2 and 

PdRu-RuO2, respectively. The Brillouin zone was sampled with Monkhorst mesh of 

1×1×1. The self-consistent calculations apply a convergence energy threshold of 10-4 

eV and a force convergency of 0.05 eV/Å. The H-transfer process was simulated using 

the climbing image nudged elastic band (ci-NEB) method [4]. The reaction free energy 

for elementary steps in HER were calculated based on the computational hydrogen 

electrode (CHE) approximation [5].

The free energy corrections were considered at the temperature of 298 K, following:

ΔG = ΔE + ΔGZPE + ΔGU – TΔS

where ΔE, ΔGZPE, ΔGU, and ΔS refer to the DFT calculated energy change, the 

correction from zero-point energy, the correction from inner energy and the correction 

from entropy [6].

Fig.S1 TEM images of the metallene-like Pd nanostructures with different 



magnifications.  

Fig.S2 TEM images of the metallene-like PdCu nanostructures with different 

magnifications.  

Fig.S3 STEM image of the metallene-like PdRu-RuO2 nanostructure.  



Fig.S4 TEM image of the metallene-like PdRu-RuO2 nanostructure with different 

magnifications.  

Fig.S5 XPS survey spectra of the PdRu-RuO2 and PdRu nanostructure.  



Fig.S6 TEM image of the carbon black loaded PdRu-RuO2 nanostructure.  

Fig.S7 LSV polarization curves of Pd/C and Pt/C in 1 M KOH solution.  

a



Fig.S8 LSV polarization curves of Pd/C and Pt/C in 0.5 M H2SO4 solution.  

Fig.S9 TEM image of the carbon black loaded PdRu-RuO2/C after long-time 

electrochemical operation.



Fig.S10 (a) CV curves of PdRu-RuO2/C and PdRu/C in 1 M KOH solution. (b) 

Histograms for the ECSA of PdRu-RuO2/C and PdRu/C.

Fig.S11 Histogram for the specific activities of MOR, EOR, EGOR, and GOR 

catalyzed by PdRu-RuO2/C and PdRu/C.

Fig.S12 (a) i-t curve of PdRu-RuO2/C for EGOR. (b) CV curves of PdRu-RuO2/C 

before and after i-t test.



Fig.S13 Histogram of the percentage of mass activity when normalized with the 

oxidation peak current. 

Fig.S14 LSV curve of PdRu-RuO2/C for driving overall water splitting in 1 M KOH 



electrolyte. 

Fig.S15 LSV curve of Pt/C for driving HER and EOR in an aqueous solution containing 

1 M KOH and 1 M CH3CH2OH. 

Fig.S16 Hydrogen transfer energy of different active sites based on PdRu-RuO2. 



Fig.S17 Hydrogen transfer energy of different active sites based on Ru-RuO2.

Fig.S18 Hydrogen spillover process of different active sites based on PdRu-RuO2.



Fig.S19 Hydrogen spillover process of different active sites based on Ru-RuO2.

Table S1 Summary of the work functions of different materials

Catalyst Work function (eV)

Pd 5.12

Ru 4.71

PdRu 5.05

RuO2 5.13
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