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Computational method

All the DFT calculations are performed by the Vienna Ab initio Simulation Package
(VASP) [1] with the projector augmented wave (PAW) method [2]. The exchange-
functional is treated using the generalized gradient approximation (GGA) of Perdew-
Burke-Ernzerhof (PBE) [3] functional. The energy cutoff for the plane wave basis
expansion was set to 400 eV and the force on each atom less than 0.05 eV/A was set
for convergence criterion of geometry relaxation. Partial occupancies of the
Kohn—Sham orbitals were allowed using the Gaussian smearing method and a width of
0.2 eV. The interface between RuO, and Ru/PdRu was built, named as Ru-RuO, and
PdRu-RuO,, respectively. The Brillouin zone was sampled with Monkhorst mesh of
1x1x1. The self-consistent calculations apply a convergence energy threshold of 104
eV and a force convergency of 0.05 eV/A. The H-transfer process was simulated using
the climbing image nudged elastic band (ci-NEB) method [4]. The reaction free energy
for elementary steps in HER were calculated based on the computational hydrogen
electrode (CHE) approximation [5].
The free energy corrections were considered at the temperature of 298 K, following:
AG = AE + AGgzpg + AGy — TAS
where AE, AGzpg, AGy, and AS refer to the DFT calculated energy change, the
correction from zero-point energy, the correction from inner energy and the correction

from entropy [6].

Fig.S1 TEM images of the metallene-like Pd nanostructures with different



magnifications.
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Fig.S2 TEM images of the metallene-like PdCu nanostructures with different

magnifications.

Fig.S3 STEM image of the metallene-like PdARu-RuO, nanostructure.
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Fig.S4 TEM image of the metallene-like PdRu-RuO, nanostructure with different

magnifications.
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Fig.S5 XPS survey spectra of the PARu-RuO, and PdRu nanostructure.



Fig.S6 TEM image of the carbon black loaded PdRu-RuO; nanostructure.
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Fig.S7 LSV polarization curves of Pd/C and Pt/C in 1 M KOH solution.
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Fig.S8 LSV polarization curves of Pd/C and Pt/C in 0.5 M H,SO, solution.

Fig.S9 TEM image of the carbon black loaded PdRu-RuQO,/C after long-time

electrochemical operation.
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Fig.S10 (a) CV curves of PdRu-RuO,/C and PdRu/C in 1 M KOH solution. (b)
Histograms for the ECSA of PdRu-RuO,/C and PdRu/C.
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Fig.S11 Histogram for the specific activities of MOR, EOR, EGOR, and GOR
catalyzed by PdRu-RuO,/C and PdRu/C.
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Fig.S12 (a) i-t curve of PdRu-RuO,/C for EGOR. (b) CV curves of PdRu-RuO,/C

before and after i-t test.
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Fig.S13 Histogram of the percentage of mass activity when normalized with the

oxidation peak current.

25

0.0 0.3 076 0?9 1:2 1.5
Cell Voltage / V

Fig.S14 LSV curve of PdRu-RuO,/C for driving overall water splitting in 1 M KOH



electrolyte.
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Fig.S15 LSV curve of Pt/C for driving HER and EOR in an aqueous solution containing
1 M KOH and 1 M CH;CH,OH.
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Fig.S16 Hydrogen transfer energy of different active sites based on PdRu-RuO,.
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Fig.S17 Hydrogen transfer energy of different active sites based on Ru-RuO,.
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Fig.S18 Hydrogen spillover process of different active sites based on PdRu-RuO,.
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Fig.S19 Hydrogen spillover process of different active sites based on Ru-RuO,.

Table S1 Summary of the work functions of different materials

Catalyst Work function (eV)
Pd 5.12
Ru 4.71
PdRu 5.05
RuO, 5.13
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