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Experimental section

Materials synthesis: Firstly, the NiMoO4 precusor material was synthesized by a simple 

one-pot hydrothermal process. In detail, 0.25 g glucose was uniformly dispersed in 60 

ml DI water under continuous stirring for 0.5 h. Then, 0.8724 g Ni(NO3)2·6H2O, 0.5297 

g (NH4)6Mo7O24·4H2O and 1.4019 g hexamethylenetetramine were dissolved in the 

above solution and stirred for 1h. Next, the mixed solution was transferred to a 100 ml 

Teflon-lined stainless steel autoclave and kept temperature at 200 °C for 24 h. After 

cooling to room temperature, the brown sediment was washed several times by 

centrifugation using DI water and ethanol, and dried under a vacuum at 60 °C for 12 h. 

Secondly, the sulfur powder and the obtained NiMoO4 precusor were put at the 

upstream and downstream of the tube furnace, respectively, and annealed at 500 °C for 

2 h under H2/Ar atmosphere to obtain the final MoS2/Ni3S2@C material. For 

comparison, Ni3S2/C, MoS2/C and MoS2/Ni3S2 materials were also synthesized via the 

similar process just without Mo or Ni sources or glucose additives.

Materials characterizations: The phase purity and structure of the obtained materials 

were verfied by X-ray diffraction (XRD) with Cu Kα radiation. The morphology and 

microstructure were probed by the scaning electron microscopy (SEM, SU 8020, 

HITACHI), transmission electron microscopy (TEM, Tecnai G2F20), and high-

resolution transmission electron microscopy (HRTEM). The elemental mapping 

measurement was carried out in the energy-dispersive X-ray spectroscope (EDS) 

attached to TEM. Raman spectroscopy measurements were performed on a Horiba 

Jobin Yvon T6400 with a 514.5 nm laser excitation. X-ray photoelectron spectroscopy 

(XPS) was collected by a Thermo Scientific ESCALAB 250 with Al Kα as the 

excitation source. The specific surface area and pore size distribution were provided by 

N2 adsorption and desorption test (Autosorb-iQ-Cx) at 77 K using the Bruauer-Emmett-

Teller (BET) and Barret-Joyner-Halenda (BJH) methods. Thermogravimetric analysis 

(TGA) was implemented by the Pyris 1 Thermogravimetric Analyzer. The electrical 

conductivity measurements were carried out on a commercial Physical Property 

Measurement System (PPMS, 1.8 K≤T≤400 K, 0 T≤H≤9 T) using the four-probe 



method. 

Electrochemical measurements: Electrochemical performance was evaluated using 

CR2032 coin-type cells, which were assembled in an argon-filled glove box with 

moisture and oxygen less than 0.1 ppm. The working electrode was prepared by mixing 

the as-prepared materials, Super P, and sodium carboxymethyl cellulose (CMC) in a 

weight ratio of 7:2:1 into a certain amount of DI water. The uniformly mixed slurry was 

pasted onto Cu foil and then dried in a vacuum oven at 80 °C overnight. The loading 

mass of the working electrodes is about 1-2 mg/cm2. For SIBs, Na foil was employed 

as the counter electrode, glass microfiber filters as the separator, and 1 M NaClO4 

dissolved in PC (propylene carbonate) and EC in a volume ratio of 1:1 with 5% FEC 

(fluoroethylene carbonate) as the electrolyte. For PIBs, K foil was served as the counter 

electrode, glass microfiber filters as the separator, and 3 M KFSI in DME (1, 2-

Dimethoxyethane) as the electrolyte. Galvanostatic charge and discharge (GCD) 

measurements were carried out on a LAND battery test system in a voltage window of 

0.01-3.0 V. Cyclic voltammetry (CV) measurements from 0.01 to 3.0 V at different 

scan rates and electrochemical impendence spectra (EIS) at the frequency range of 105-

0.01 Hz were performed using a CHI 660E electrochemical workstation. 

DFT Calculation: The density functional theory (DFT) calculations were performed by 

the Vienna Ab-initio Simulation Package (VASP).[1] According to the generalized 

gradient approximation (GGA), the projector-augmented wave (PAW) pseudopotential 

with Perdew-Burke-Ernzerhof (PBE) parametrization were used.[2] The cut-off energy 

for the wave function is set as 450 eV, and the Brillouin zone was sampled via a -

centered k-mesh scheme with a 0.02 × 2 Å-1 space. The energy and force were 

converged to 1.0×10−5 eV/atom and 0.02 eV/ Å, respectively. A 20 Å vacuum layer 

thickness was applied to avoid virtual interaction. The adsorption energy of Na on MoS2 

or MoS2/Ni3S2 heterostructure was calculated by Eads=Etotal-ENa-Ehost, where the Etotal is 

the total energy of Na-absorbed MoS2 or MoS2/Ni3S2 heterostructure, ENa is the energy 

of isolated Na atom and Ehost is the energy of MoS2 or MoS2/Ni3S2 heterostructure 

framework. 



Fig. S1. XRD pattern of the NiMoO4 precursor material. 



Fig. S2. a-c) SEM, d-f) TEM and g-i) HRTEM images of the MoS2/Ni3S2, MoS2/C and Ni3S2/C 
samples.



Fig. S3. XRD patterns of the MoS2/Ni3S2, MoS2/C and Ni3S2/C samples.



Fig. S4. Raman spectrum of the MoS2/Ni3S2 sample.



Fig. S5. XPS survey spectrum the MoS2/Ni3S2@C material.
 



Fig. S6. a) Isothermal N2 adsorption and desorption curves and b) pore size distribution of the 
MoS2/Ni3S2 sample. 



Detailed process about TGA calculation of the MoS2/Ni3S2@C sample: In the 

temperature range from 50 to 700 °C in air, the main part of the weight loss is composed 

of three parts: the oxidation of MoS2, Ni3S2 and carbon layer. The total weight loss is 

about 46.5 wt.% in the experimental process. Assumed to the final product is MoO3 and 

NiO, the corresponding reaction equations can be written as follows:

2MoS2 + 7O2 → 2MoO3 + 4SO2                                       (1)

2Ni3S2 + 7O2 → 6NiO + 4SO2                                                             (2)

C + O2 → CO2                                                                               (3)

The carbon content of the Ni3S2/MoS2/C heterostructure material was calculated based 

on the following procedures:

Assumed to molar mass of MoS2 = M1, Ni3S2 = M2, MoO3 = M3, NiO = M4, the total 

content of the heterostructure material = m0, the content of MoS2 in the heterostructure 

= m1, Ni3S2 content in the heterostructure = m2, MoO3 content in the heterostructure = 

m3, NiO content in the heterostructure = m4 and carbon content in the heterostructure = 

m5.

Due to the final product is MoO3 and NiO, so m3 + m4 = 0.535m0.

According to Equation (1) and (2), m3 and m4 can be deduced from m3 = M3×m1/M1 = 

0.90m1, and m4 = M4×3m2/M2 = 0.90m2, respectively.

Combining the EDS results, the atomic ratio of Ni and Mo is about 2:1, we can calculate 

that m1/m2 is about 1:1. So, we can obtain 0.9m1 +0.90m2 = 0.535m0, m1 = m2 = 0.3m0, 

Thus, carbon content of the heterostructure m5 = m0 -0.6m0 = 0.4m0.

So, the contents of MoS2, Ni3S2 and carbon in the heterostructure material are about 30 



wt%, 30 wt% and 40 wt%, respectively.

Fig. S7. The SEM images of (a) before cycling and (b) after 200 cycles for the MoS2/Ni3S2@C 
electrode for SIBs.  



Fig. S8. EIS comparison of the for the MoS2/Ni3S2@C and MoS2/Ni3S2 electrodes for SIBs.



Fig. S9. The relationship of temperature dependent electrical conductivity at the range of 250-340 
K for (a) MoS2/Ni3S2 and (b) MoS2/Ni3S2@C electrodes.



Fig. S10. Rate performance comparison of this work with the previously reported MoS2-based 
heterostructure anodes for SIBs. 



Table S1 The detailed comparison of the sodium storage performance this work with the previously 
reported MoS2-based heterostructure anodes for SIBs. 

Electrodes Cycling 

performance

(mAh g-1/n/A g-1)

Rate 

performance

(mAh g-1/A g-1)

Loading 

mass

(mg cm-2)

Ref.

Bi2S3/MoS2 427.7/100/0.5 325.5/10 1.0-1.2 [6]

MnS-MoS2 214/500/1.0 78.3/10 1.2 [7]

NB-NiMoS 420/200/0.5 309/10 1.4 [8]

Cu2S@carbon@MoS2 300/200/0.3 297/3 1.0 [9]

MoS2-NiS 391/700/2.0 342/10 1.5 [3]

G/NiS2-MoS2 509.6/500/0.5 424.5/2 1.0 [4]

Cu2S/MoS2⊂Carbon 336.2/300/1.0 260.2/10 1.0 [10]

NiS/MoS2/C 335/190/1.0 398/5 1.0-2.0 [5]

MoS2/Ni3S2@C 400/200/1.0 318.5/10 1.0-2.0 This work

mailto:100%20cycles@0.0.0.5


Fig. S11. The cycling performance of the MoS2/Ni3S2 electrode for PIBs at 1 A g-1.



Fig. S12. The rate performance of the MoS2/Ni3S2 electrode for PIBs.



Fig. S13. The fitted b values at the different redox peaks for the MoS2/Ni3S2@C heterostructure 
electrode in SIBs.



Fig. S14. Ex-situ XRD patterns of the MoS2/Ni3S2@C heterostructure electrode for SIBs at the 
different discharge/charge states.



Fig. S15. Ex-situ XRD patterns of the MoS2/Ni3S2@C heterostructure electrode for PIBs at the 
different discharge/charge states.



Fig. S16. EDS-mapping images of the MoS2/Ni3S2@C electrode heterostructure electrode for SIBs 
at the full de-sodiation state.



Fig. S17. EDS-mapping images of the MoS2/Ni3S2@C electrode heterostructure electrode for PIBs 
at the full de-potassiation state.
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