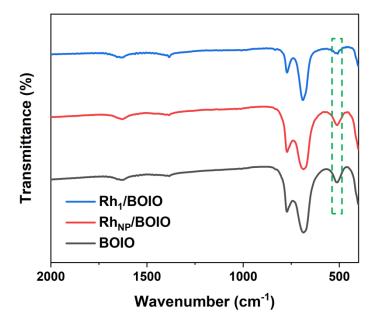

Supporting Information for


Tuning the Selectivity of Benzylamine Photo-oxidation with Different Rhodium Modes Anchoring on BiOlO₃

Jiaping Liu,^{‡a} Yan Wu,^{‡a} Qingqing Chen,^{‡a} Rui Yu,^a Keqing Shi,^b Tao Jing,^d Zhujie Li,^{b*} Zaizhu Lou,^{c*} and Gang Wang^{a*}

Figs and Tables

Fig. S1 XRD patterns of the Rh₁/BOIO, Rh_{NP}/BOIO, BOIO and the standard BOIO.

Fig. S2 The Fourier transforms infrared spectroscopy (FT-IR) of samples. The peak at around 514 cm⁻¹ is the stretching vibration of Bi-O of BOIO (green box). In $Rh_1/BOIO$, the characteristic peak of Bi-O has been reduced, which could attribute to the formation of Rh-O bond.

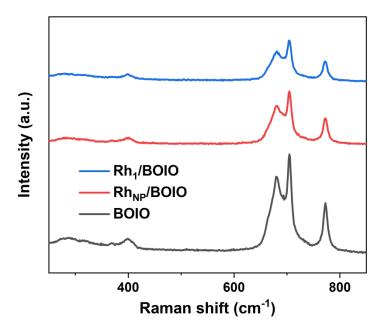


Fig. S3 The Raman spectra of $Rh_1/BOIO$, $Rh_{NP}/BOIO$ and BOIO.

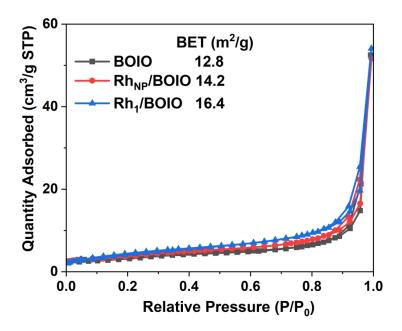


Fig. S4 Nitrogen adsorption and desorption isotherms of $Rh_1/BOIO$, $Rh_{NP}/BOIO$ and BOIO.

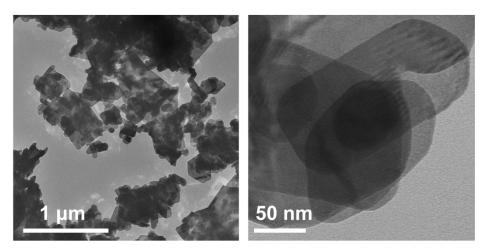


Fig. S5 TEM images of BOIO.

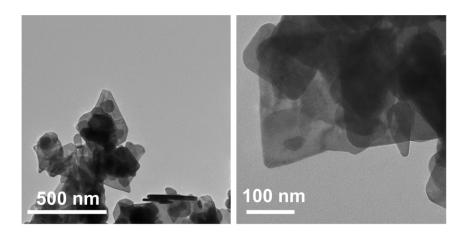


Fig. S6 TEM images of Rh₁/BOIO.

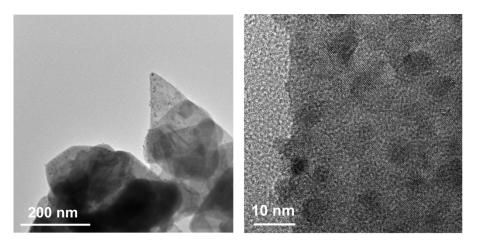


Fig. S7 TEM images of Rh_{NP} /BOIO.

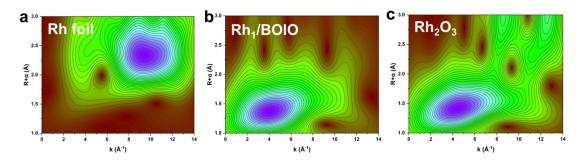
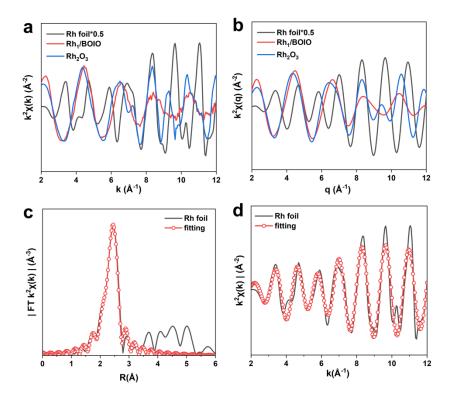
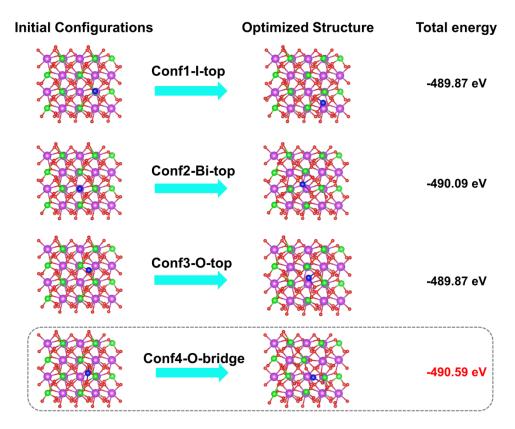




Fig. S8 WT plots of samples. (a) Rh foil, (b) $Rh_1/BOIO$ and (c) Rh_2O_3 .

Fig. S9 (a) The k-space spectra of EXAFS of Rh foil, Rh_2O_3 and $Rh_1/BOIO$. (b) The q-space spectra of EXAFS of Rh foil, Rh_2O_3 and $Rh_1/BOIO$. (c) R-space fitting results of Rh foil. (d) k-space fitting results of Rh foil.

Fig. S10 The optimized structure of Rh₁/BOIO. These are four different initial configurations have been established, Conf1-I-top, Conf2-Bi-top, Conf3-O-top and Conf4-O-bridge. The most stable configuration of Conf4-O-bridge can be confirmed after structural optimization. purple ball: Bi, green ball: I, red ball: O, blue ball: Rh.

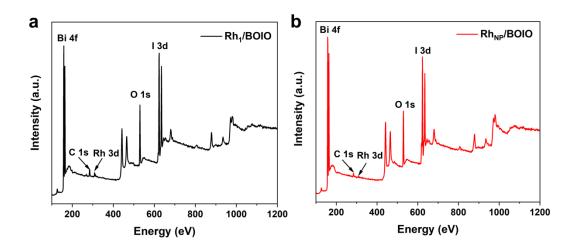
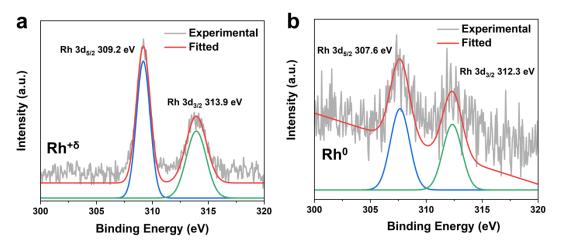
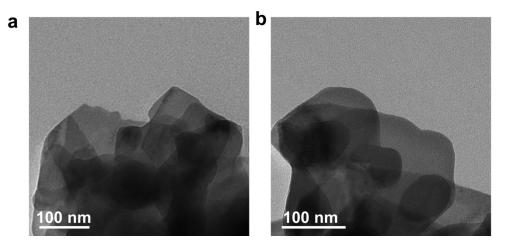




Fig. S11 XPS survey spectrum of the as-prepared (a) $Rh_1/BOIO$ and (b) $Rh_{NP}/BOIO$.

Fig. S12 XPS results of Rh 3d of (a) $Rh_1/BOIO$ (0< δ <3) and (b) $Rh_{NP}/BOIO$.

Fig. S13 TEM images of (a) Rh₁-0.34wt% and (b) Rh₁-1.04wt%. Rh₁-0.34wt% sample was obtained after photo-deposition process between 61 μ L RhCl₃•xH₂O solution (0.1 g mL⁻¹) and 0.3 g BOIO. 183 μ L RhCl₃•xH₂O solution (0.1 g mL⁻¹) was mixed with 0.3 g BOIO to obtain Rh₁-0.34wt% sample after light irradiation.

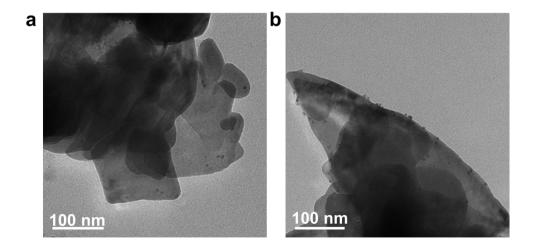
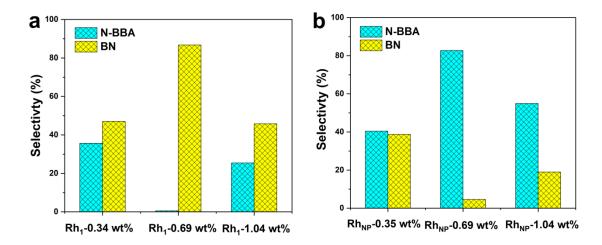



Fig. S14 TEM images of (a) Rh_{NP} -0.35wt% and (b) Rh_{NP} -1.04wt%. The samples were obtained via controlling the amount of as-prepared Rh_{NP} .

Fig. S15 (a) The selectively of N-BBA and BN over different Rh_1 amount on BOIO surface, Rh_1 -0.69 wt% is the Rh_1 /BOIO sample (b) The selectively of N-BBA and BN over different Rh_{NP} amount on BOIO surface, Rh_{NP} -0.69 wt% is the Rh_{NP} /BOIO sample. The optimized loading amounts of Rh species for Rh_1 /BOIO and Rh_{NP} /BOIO have been confirmed.

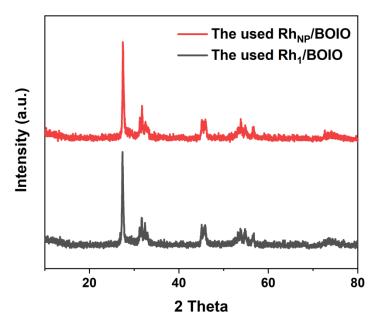


Fig S16. The XRD patterns of the used Rh₁/BOIO and Rh_{NP}/BOIO.

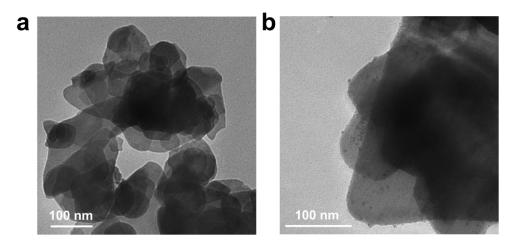


Fig S17. The TEM images of the used (a) $Rh_1/BOIO$ and (b) $Rh_{NP}/BOIO$.

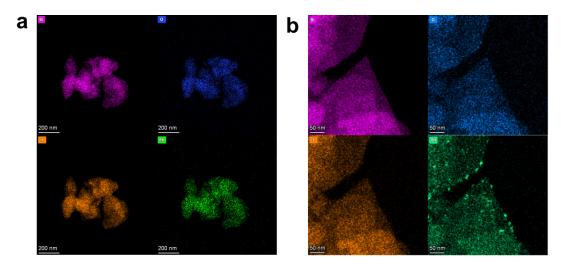


Fig S18. The elements mapping images of the used (a) $Rh_1/BOIO$ and (b) $Rh_{NP}/BOIO$

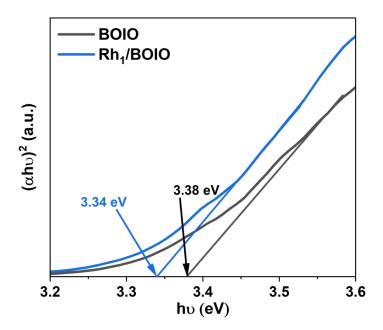
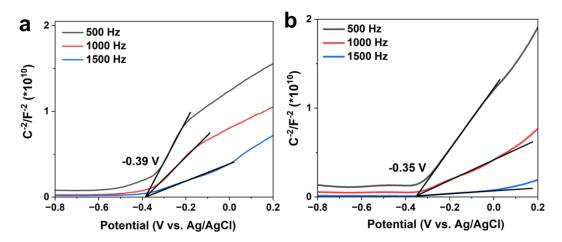



Fig S19. The obtained bandgap of samples via Kubelka–Munk function.

Fig S20. Mott-Schottky plots of (a) BOIO and (b) $Rh_1/BOIO$ under different frequency. The flat band potential obtained by the M-S plots is approximately 0.1 V below their conductor band positions for n-type semiconductors.

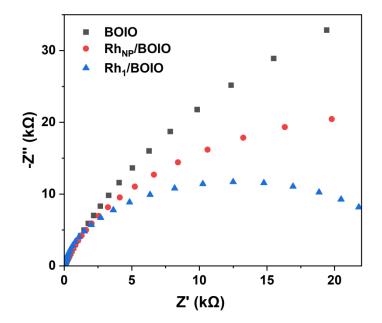


Fig S21. The EIS plots of samples.

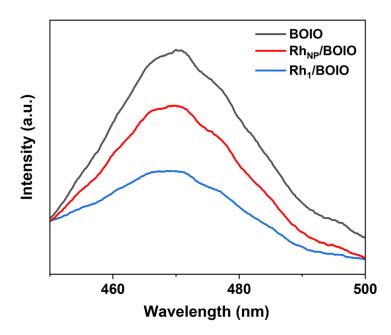


Fig S22. The steady-state PL spectra results of samples.

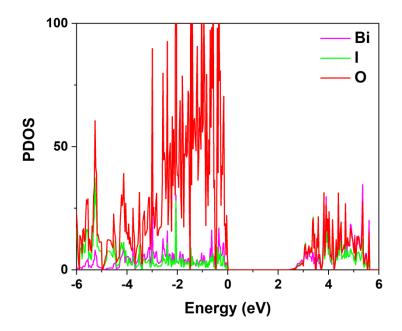


Fig S23. The PDOS results of BOIO.

Table S1. Structural parameters extracted from the Rh K-edge EXAFS fitting. $(S_0^2=0.74)$

Sample	Scattering pair	CN	R(Å)	σ²(10 ⁻³ Ų)	ΔE ₀ (eV)	R factor
Rh ₁ /BOIO	Rh-O	2.32	2.03	4.13	-0.51	0.009
Rh foil	Rh-Rh	12*	2.68	3.82	4.64	0.014

 S_0^2 , CN and R is the amplitude reduction factor, coordination number and interatomic distance (the bond length between central atoms and surrounding coordination atoms), respectively; σ^2 is Debye-Waller factor (a measure of thermal and static disorder in absorber-scatterer distances); ΔE_0 is edge-energy shift (the difference between the zero kinetic energy value of the sample and that of the theoretical model). R factor is used to value the goodness of the fitting.

* This value was fixed during EXAFS fitting, based on the known structure.

Error bounds that characterize the structural parameters obtained by EXAFS spectroscopy were estimated as N ± 10%; R ± 1%; σ^2 ± 15%; ΔE_0 ± 20%.

```
Rh<sub>1</sub>/BOIO (FT range: 2.0-11.1 Å<sup>-1</sup>; fitting range: 1.05-2.0 Å)
Rh foil (FT range: 3.0-14.0 Å<sup>-1</sup>; fitting range: 1.0-2.8 Å)
```

Photocatalyst	Product	Conversion (%)	Selectivity (%)	Reference
Rh₁/BOIO	BN	99.9	86.7	This work
RuO ₂ /Al ₂ O ₃		75	49	1
Ru-K-ZrO ₂		66	81	2
3%Ru/AC		99.9	81.7	3
[Ru(phen)(PPh ₃) ₂ (CO)(H)]ClO ₄		93	82	4
RuCl ₃		100	53	5
Ru@E-MoS ₂		19	99	6
[RuCl(bhq)(tpy)] [PF ₆]		74	_	7

Table S2. BA photo-oxidation performances over Rh₁/BOIO.

Table S3. BA photo-oxidation performances over $Rh_{NP}/BOIO$.

Photocatalyst	Product	Conversion (%)	Selectivity (%)	Reference
Rh _{NP} /BOIO	N-BBA	99.9	82.8	This work
meso-MoOx-300		77	13	8
NH_2 -MIL- 125(Ti)/amorphous TiO ₂		75	73	9
TiO ₂		81	63	10
g-C ₃ N ₄ /BiOBr		63.1	87	11
WS ₂		85	85	12
TiO ₂ nano-flower-4h		99	73.3	13
UiO-66NH ₂ -@Au _{0.5} @COF1		66.9	96	14
WO ₃ /BiOBr		63.8	87	15
BiOl _{0.2} Cl _{0.8}		77.5	96	16
Cu catalysts		82.2	99	17

Samples	τ ₁ (ns)	A ₁	τ ₂ (ns)	A ₂	τ _{avg} (ns)
BOIO	0.8538	228.6940	6.8506	1.5270	1.1587
Rh _{NP} /BOIO	0.8642	218.7880	4.7132	4.0910	1.2204
Rh₁/BOIO	0.8817	205.5880	4.0689	7.6420	1.3484

Table S4. The average lifetimes of different samples.

References

- Nordvang, E. C.; Schill, L.; Riisager, A.; Fehrmann, R. Ruthenium Dioxide Catalysts for the Selective Oxidation of Benzylamine to Benzonitrile: Investigating the Effect of Ruthenium Loading on Physical and Catalytic Properties. *Top. Catal.* 2017, 60, 1449–1461.
- Zhu, G.; Shi, S.; Feng, X.; Zhao, L.; Wang, Y.; Cao, J.; Gao, J.; Xu, J. Switching Amine Oxidation from Imines to Nitriles by Carbon-Hydrogen Bond Activation via Strong Base Modified Strategy. ACS Appl. Mater. Interfaces 2022, 14, 52758–52765.
- Niu, B.; Lu, F.; Zhang, H.-Y.; Zhang, Y.; Zhao, J. Synthesis of Nitriles from Aerobic Oxidation of Amines Catalyzed by Ruthenium Supported on Activated Carbon. *Chem. Lett.* 2017, 46, 330–333.
- Ray, R.; Chandra, S.; Yadav, V.; Mondal, P.; Maiti, D.; Lahiri, G. K. Ligand controlled switchable selectivity in ruthenium catalyzed aerobic oxidation of primary amines. *Chem. Commun.* 2017, *53*, 4006–4009.
- Tang, R.; Diamond, S. E.; Neary, N.; Mares, F., Homogeneous catalytic oxidation of amines and secondary alcohols by molecular oxygen. *J. Chem. Soc., Chem. Commun.* 1978, 562.
- Asif Hussain, M.; Yang, M.; Jang, H.-S.; Hwang, S.-Y.; Um, B.-H.; Choi, B. G.; Kim, J. W. Two-Dimensional Heterogeneous Ruthenium–Molybdenum Disulfide Nanocatalyst for the Selective Aerobic Oxidation of Amines. *Ind. Eng. Chem. Res.* 2016, *55*, 7043–7047.
- Aiki, S.; Taketoshi, A.; Kuwabara, J.; Koizumi, T.-A.; Kanbara, T., The catalytic activity of a cyclometalated ruthenium(III) complex for aerobic oxidative dehydrogenation of benzylamines. *J. Organomet. Chem.* 2011, 696, 1301–1304.

- Shubhashish, S.; Khanna, H. S.; Achola, L. A.; Amin, A. S.; Willis, W. S.; Suib, S. L. Selective Oxidative Coupling of Amines Using Mesoporous MoO_x Catalysts. ACS Appl. Nano Mater. 2021, 4, 2086–2097.
- Sheng, W.; Huang, F.; Lang, X. NH₂-MIL-125(Ti)/amorphous TiO₂ microspheres for enhanced visible light photocatalytic selective oxidation of amines. *Mater. Today Chem.* 2023, 30, 101505.
- Li, N.; Lang, X.; Ma, W.; Ji, H.; Chen, C.; Zhao, J., Selective aerobic oxidation of amines to imines by TiO₂ photocatalysis in water. *Chem. Commun.* **2013**, *49*, 5034.
- Juntrapirom, S.; Anuchai, S.; Thongsook, O.; Pornsuwan, S.; Meepowpan, P.; Thavornyutikarn, P.; Phanichphant, S.; Tantraviwat, D.; Inceesungvorn, B., Photocatalytic activity enhancement of g-C₃N₄/BiOBr in selective transformation of primary amines to imines and its reaction mechanism. *Chem. Eng. J.* **2020**, *394*, 124934.
- Raza, F.; Park, J. H.; Lee, H.-R.; Kim, H.-I.; Jeon, S.-J.; Kim, J.-H. Visible-Light-Driven Oxidative Coupling Reactions of Amines by Photoactive WS₂ Nanosheets. *ACS Catal.* 2016, 6, 2754–2759.
- Bu, J.; Fang, J.; Leow, W. R.; Zheng, K.; Chen, X. Single-crystalline rutile TiO₂ nano-flower hierarchical structures for enhanced photocatalytic selective oxidation from amine to imine. *RSC Adv.* 2015, *5*, 103895–103900.
- Zhang, K.; Xi, Z.; Wu, Z.; Lu, G.; Huang, X., Visible-Light-Induced Selective Oxidation of Amines into Imines over UiO-66-NH₂@Au@COF Core-Shell Photocatalysts. ACS Sustainable Chemistry & Engineering 2021, 9, 12623–12633.
- Khampuanbut, A.; Santalelat, S.; Pankiew, A.; Channei, D.; Pornsuwan, S.; Faungnawakij,
 K.; Phanichphant, S.; Inceesungvorn, B. Visible-light-driven WO₃/BiOBr heterojunction photocatalysts for oxidative coupling of amines to imines: Energy band alignment and mechanistic insight. *J. Colloid Interface Sci.* 2020, *560*, 213–224.
- Anuchai, S.; Tantraviwat, D.; Nattestad, A.; Chen, J.; Inceesungvorn, B., Tuning product selectivity and visible-light-driven activity in oxidative coupling of amines to imines: A case study of BiOl_xCl_{1-x} photocatalyst. *Colloids and Surfaces A: Physicochemical and Engineering Aspects* 2021, 629, 127481.
- Chai, Y.; Zhang, L.; Liu, Q.; Yang, F.; Dai, W.-L. Insights into the Relationship of the Heterojunction Structure and Excellent Activity: Photo-Oxidative Coupling of Benzylamine on CeO₂-rod/g-C₃N₄ Hybrid under Mild Reaction Conditions. *ACS. Sustain. Chem. Eng.* **2018**, *6*, 10526–10535.