Journal of Materials Chemistry A

Supporting Information (SI)

Construction of \boldsymbol{p}-nitropyrazole-1,3,4-triazole framework energeticcompounds: towards a series of high-performance heat-resistantexplosives
Chengchuang Li ${ }^{\text {al }}$, Teng Zhu ${ }^{\text {al }}$, Caijin Lei ${ }^{\text {a }}$, Guangbin Cheng*a Chuan Xiao*b and Hongwei Yang*aa. School of Chemistry and Chemical Engineering, Nanjing University of Science andTechnology, Xiaolingwei 200, Nanjing, Jiangsu, China.*Corresponding author E-mail: hyang@mail.njust.edu.cn (H. Yang), gcheng@mail.njust.edu.cn(G. Cheng).b. China Northern Industries Group Co., Ltd. (NORINCO GROUP), Beijing 100089, P. R. China*Corresponding author E-mail: 47785121@,qq.com (C. Xiao).

Table of Contents

1. Experimental sections 1
2. Computational details 5
3. Crystallographic data 7
4. Spectrums of compounds 11
5. DSC and TG of compounds 25

1. Experimental sections

General methods

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on 500 MHz (Bruker AVANCE 500) nuclear magnetic resonance spectrometers operating at 500 and 126 MHz , respectively, by using DMSO-d6 as the solvent and locking solvent unless otherwise stated. Chemical shifts in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are reported relative to DMSO. DSC was performed in closed Al containers with a nitrogen flow of $30 \mathrm{~mL} \mathrm{~min}{ }^{-1}$ on an STD-Q600 instrument. Infrared (IR) spectra were recorded on a Perkin-Elmer Spectrum BX FTIR equipped with an ATR unit at $25^{\circ} \mathrm{C}$. Impact sensitivity and friction sensitivity of samples are measured by using the standard BAM methods.

Synthesis

5-(3-(1H-pyrazol-4-yl)-1H-1,2,4-triazol-1-yl)-1H-tetrazole (A3)

To a mixture of ethyl 1H-pyrazole-4-carbimidate (1) ($1.39 \mathrm{~g}, 10 \mathrm{mmol}$) and ethanol (15 mL), 5-hydrazineyl-1H-tetrazole (A1) ($1 \mathrm{~g}, 10 \mathrm{mmol}$) and TEA ($2.02 \mathrm{~g}, 20 \mathrm{mmol}$) were added in sequence at ambient temperature. Heat the mixed solution to $35^{\circ} \mathrm{C}$ and stirred continuously for 3 h . The solid was dispersed in 15 mL formic acid and heat to reflux for 12 h . After the solution temperature was restored to room temperature, the solution was filtered to obtain solid $\mathbf{A 3}$ ($1.69 \mathrm{~g}, 83 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6): $\delta=$ 6.24 (br), 8.17 (s), 9.34 (s) ppm. ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d6): $\delta=112.28,133.24$, $145.89,155.49,159.34 \mathrm{ppm}$. IR (KBr): $\tilde{v} 3436.2,1603.4,1573.4,1531.4,1486.5$, 1433.9, 1208.5, 1085.6, 1002.8, $696.3 \mathrm{~cm}^{-1}$. Elemental analysis for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{9}$ (203.17): calcd C, 35.47 ; H, 2.48; N, 62.05\%. Found: C 33.44, H 2.50, N 64.06\%.

```
3-(3,5-dinitro-1H-pyrazol-4-yl)-1H-1,2,4-triazole (DPT)
```

A3 $(1.27 \mathrm{~g}, 6.60 \mathrm{mmol})$ was added to the mixture of 98% sulfuric acid $(24 \mathrm{~mL})$ and 98 $\%$ nitric acid $(4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was warmed up to room temperature slowly. The final reaction was stirred at $30{ }^{\circ} \mathrm{C}$ for 2 h . After pouring into ice-water under vigorous stirring, the final mixture was filtered, washed with ice-water and dried in air, giving DPT as a white solid ($1.16 \mathrm{~g}, 78 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6): $\delta=6.15$ (s), 9.01 (s) ppm. ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d6): $\delta=100.01,145.63,147.29,152.44$ ppm. IR (KBr): ṽ 3417.2, 2633.4, 1659.1, 1599.9, 1593.5, 1333.7, 1014.9, 868, 820.7 cm^{-1}. Elemental analysis for $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{7} \mathrm{O}_{4}$ (225.12): calcd C, $26.68 ; \mathrm{H}, 1.34 ; \mathrm{N}, 43.55 \%$. Found: C 26.67 , H 1.36, N 43.53%.

4-(3-(1H-pyrazol-4-yl)-1H-1,2,4-triazol-5-yl)-1,2,5-oxadiazol-3-amine (B2)

To a solution of $1(0.69 \mathrm{~g}, 5 \mathrm{mmol})$ in 30 mL absolute methanol, 4 -amino-1,2,5-oxadiazole-3-carbohydrazide (B1) $(0.72 \mathrm{~g}, 5 \mathrm{mmol})$ and TEA ($1.01 \mathrm{~g}, 10 \mathrm{mmol}$) were added in portions. The resulted mixture was refluxed for 12 h . The precipitate was collected through filtration. Dissolve the sediment in 50 mL water, slowly add 0.5 g KOH , and reflux the reaction system for 12 h . After cooled to room temperature, concentrated hydrochloric acid was added dropwise to adjust the pH value to 1 . The precipitate was collected through filtration, washed with water and dried at $40{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6): $\delta=6.53$ (s), 8.30 (s) ppm. ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d6): $\delta=108.91,133.40,143.11,148.03,151.89,159.38 \mathrm{ppm}$. IR (KBr): \tilde{v} 3415.1, 1664.8, 1617.4, 1595.3, 1471.6, 1392.6, 1230.3, 1068.4, 1031.4, 978.8, 915.6 cm^{-1}. Elemental analysis for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{8} \mathrm{O}$ (218.18): calcd C, 38.54; H, 2.77; N, 51.36\%. Found: C 38.56, H 2.75, N 51.37\%.

3-(3-(1H-pyrazol-4-yl)-1H-1,2,4-triazol-5-yl)-4-nitro-1,2,5-oxadiazole (B3)

10 mL hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}, 30 \%\right)$ was added 20 mL sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}, 98 \%\right)$ at $0{ }^{\circ} \mathrm{C}$. Then $\mathbf{B 2}(1.30 \mathrm{~g}, 6 \mathrm{mmol})$ was slowly added. The resulted solution was maintained at room temperature for 12 h . Then the acidic solution was quenched with the ice. The formed solid was filtrated to give the white powder B3 (1.01 g, $68 \%) .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d6): $\delta=8.23$ (s) ppm. ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d6): $\delta=$ $109.24,137.35,139.59,151.45,155.83,159.76 \mathrm{ppm}$. IR (KBr): $\tilde{v} 3445.3,1726.4$, 1614.3, 1598.7, 1448.0, 1391.6, 1340.8, 1237.5, 1146.2, 1060.6, $980.5,864.4 \mathrm{~cm}^{-1}$. Elemental analysis for $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{~N}_{8} \mathrm{O}_{3}$ (248.16): calcd C, $33.88 ; \mathrm{H}, 1.62 ; \mathrm{N}, 45.15 \%$. Found: C 33.87, H 1.64, N 45.14\%.

3-nitro-4-(3-(3-nitro-1H-pyrazol-4-yl)-1H-1,2,4-triazol-5-yl)-1,2,5-oxadiazole (B4)

15 mL concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ (98\%) was cooled to $0{ }^{\circ} \mathrm{C}$, then compound $\mathbf{B 3}(1.48 \mathrm{~g}, 6$ mmol) was added slowly. After complete dissolution, 5 mL fuming HNO_{3} was added dropwise. The resulted mixture was heated at $100{ }^{\circ} \mathrm{C}$ for 12 h . Finally, the acidic mixture was quenched with crushed ice and the precipitate was filtrated to obtained the final product as white powder. $\mathbf{B 4}(1.71 \mathrm{~g}, 97 \%) .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6): $\delta=$ 8.21 (s) ppm. ${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO-d6): $\delta=97.78$, 125.20, 144.71, 148.11, 148.66, 149.71, 155.38 ppm . IR (KBr): $\tilde{\mathrm{v}} 3462.6,1662.8,1456.2,1348.1,1285.5$, 1263.7, 1254.8, 1194.7, 1084.2, 1077.4, 1069.2, $734.2,525.2 \mathrm{~cm}^{-1}$. Elemental analysis for $\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{9} \mathrm{O}_{5}$ (293.16): calcd C, 28.68; H, 1.03; N, 43.00\%. Found: C 28.70, H 1.01, N 43.01\%.

3-(3-(3,5-dinitro-1H-pyrazol-4-yl)-1H-1,2,4-triazol-5-yl)-4-nitro-1,2,5-oxadiazole

(DPTO)

15 mL concentrated fuming $\mathrm{H}_{2} \mathrm{SO}_{4}(20 \%)$ was cooled to $0^{\circ} \mathrm{C}$, then compound $\mathbf{~ B 3}$ (1.48 $\mathrm{g}, 6 \mathrm{mmol}$) was added slowly. After complete dissolution, 5 mL fuming HNO_{3} was added dropwise. The resulted mixture was heated at $120^{\circ} \mathrm{C}$ for 12 h . Finally, the acidic mixture was quenched with crushed ice and the precipitate was filtrated to obtained the final product as white powder. DPTO ($1.91 \mathrm{~g}, 94 \%$). ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d6): $\delta=100.14,143.01,147.25,148.08,152.19,159.52 \mathrm{ppm}$. IR (KBr): ṽ 3436.9, 3380.5, 1727.7, 1692.9, 1678.0, 1375.6, 1338.8, 1336.1, 1067.8, 813.4, $796.8,696.1 \mathrm{~cm}^{-1}$. Elemental analysis for $\mathrm{C}_{7} \mathrm{H}_{2} \mathrm{~N}_{10} \mathrm{O}_{7}$ (338.16): calcd C, 24.86; H, $0.60 ; \mathrm{N}, 41.42 \%$. Found: C 24.86 , H 0.62, N 41.39%.

5-(4,5-dinitro-1H-pyrazol-3-yl)-3-(1H-pyrazol-4-yl)-1H-1,2,4-triazole (C2)

The synthetic procedure for $\mathbf{C} \mathbf{2}$ was similar to that of $\mathbf{B 2}$, only 4,5 -dinitro- 1 H -pyrazole-3-carbohydrazide ($\mathbf{C 1}$) ($0.54 \mathrm{~g}, 2.5 \mathrm{mmol}$) was used instead of B1. C2 ($0.54 \mathrm{~g}, 79 \%)$. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6): $\delta=8.18$ (s) ppm. ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d6): $\delta=114.35,136.16,138.48,144.79,148.51,156.23,157.62 \mathrm{ppm}$. IR (KBr): ṽ 3394.1, $1724.8,1680.6,1605.1,1343.1,1335.8,1329.5,1315.4,1252.9,1236.7,817.7,778$, $730.6 \mathrm{~cm}^{-1}$. Elemental analysis for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~N}_{9} \mathrm{O}_{4}$ (291.19): calcd C, $33.00 ; \mathrm{H}, 1.73$; N, 43.29%. Found: C 33.01, H 1.71, N 43.31%.

5-(4,5-dinitro-1H-pyrazol-3-yl)-3-(3,5-dinitro-1H-pyrazol-4-yl)-1H-1,2,4-triazole (DPPT)

The synthetic procedure for DPPT was similar to that of B4, only $\mathbf{C 2}(0.72 \mathrm{~g}, 2.5 \mathrm{mmol})$ was used instead of B3. DPPT ($0.36 \mathrm{~g}, 38 \%$). ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d6): $\delta=$ 104.48, 138.46, 140.10, 144.19, 148.69, 157.34, 162.80 ppm . IR (KBr): $\tilde{v} 3389.3$, $3381.3,1728.8,1690.9,1688.0,1681.0,1341.5,1336.0,1314.5,817.5,813.3 \mathrm{~cm}^{-1}$. Elemental analysis for $\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{~N}_{11} \mathrm{O}_{8}$ (381.18): calcd C, $25.21 ; \mathrm{H}, 0.79 ; \mathrm{N}, 40.42 \%$. Found: C 25.22, H 0.77, N 40.44\%.

```
5'-(1H-pyrazol-4-yl)-1H,2'H-[3,3'-bi(1,2,4-triazol)]-5-amine (D2)
```

The synthetic procedure for D2 was similar to that of B2, only 4,5-dinitro-1H-pyrazole-3-carbohydrazide (D1) ($0.35 \mathrm{~g}, 2.5 \mathrm{mmol}$) was used instead of B1. D2 ($0.46 \mathrm{~g}, 85 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d6): $\delta=5.15$ (br), 8.22 (s) ppm. ${ }^{13} \mathrm{C}$ NMR (126 M , DMSO-d6): $\delta=110.20,133.24,147.01,151.54,156.96,161.08 \mathrm{ppm}$. IR (KBr): \tilde{v} 1627.6, 1607.6, 1422.4, 1402.2, 1383.5, 1318.2, 1201.1, 1135.4, 1035.2, 725.6, 632.4, $608.3,579.8 \mathrm{~cm}^{-1}$. Elemental analysis for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{9}$ (217.20): calcd C, $38.71 ; \mathrm{H}, 3.25$; N,
58.04\%. Found: C 38.72, H 3.23, N 58.05\%.

5-nitro-5'-(1H-pyrazol-4-yl)-1H,2'H-3,3'-bi(1,2,4-triazole) (D3)
D2 $(2.17 \mathrm{~g}, 10 \mathrm{mmol})$ in 20% sulfuric acid (6 ml) was added dropwise to a solution of sodium nitrite $(6.8 \mathrm{~g}, 98 \mathrm{mmol})$ in water $(10 \mathrm{ml})$ at $40^{\circ} \mathrm{C}$. The resulted solution was maintained at $50{ }^{\circ} \mathrm{C}$ for 12 h . Then the acidic solution was quenched with the ice. The formed solid was filtrated to give the white powder D3 ($1.63 \mathrm{~g}, 68 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d6): $\delta=8.92$ (s) ppm. ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d6): $\delta=109.23$, 137.24, 139.78, 147.46, 157.20, 159.77 ppm. IR (KBr): ṽ 3407.6, 1677.7, 1606.8, 1508.7, 1439.5, 1410.1, 1338.0, 1323.7, 1212.8, 1195.9, 796.9, $733.2,637.7 \mathrm{~cm}^{-1}$. Elemental analysis for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{9} \mathrm{O}_{2}$ (247.18): calcd C, $34.01 ; \mathrm{H}, 2.04 ; \mathrm{N}, 51.00 \%$. Found: C 34.02, H 2.02 , N 51.02\%.
(Z)-1,2-bis(5'-(3,5-dinitro-1H-pyrazol-4-yl)-1H,2'H-[3,3'-bi(1,2,4-triazol)]-5yl)diazene (D4)

The synthetic procedure for D4 was similar to that of B4, only D2 ($0.78 \mathrm{~g}, 0.25 \mathrm{mmol}$) was used instead of B3. D4 ($0.59 \mathrm{~g}, 39 \%$). ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d6): $\delta=$ $102.09,139.70,155.93,157.29,157.66,159.77 \mathrm{ppm}$. IR (KBr): $\tilde{\mathrm{v}} 3386.5,1693.8$, 1671.7, 1430.6, 1334.3, 1331.3, 1315.3, 1240.5, 1233.4, 1103.7, 814.3, 731.6, 672.1 cm^{-1}. Elemental analysis for $\mathrm{C}_{14} \mathrm{H}_{6} \mathrm{~N}_{22} \mathrm{O}_{8}$ (610.35): calcd C, 27.55; H, 0.99; N, 50.49%. Found: C $27.54, \mathrm{H} 1.01, \mathrm{~N} 50.47 \%$.

5'-(3,5-dinitro-1H-pyrazol-4-yl)-5-nitro-1H,2'H-3,3'-bi(1,2,4-triazole) (DPBT)

The synthetic procedure for DPBT was similar to that of B4, only D3 ($0.62 \mathrm{~g}, 2.5 \mathrm{mmol}$) was used instead of B3. DPBT ($0.29 \mathrm{~g}, 35 \%$). ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d6): $\delta=$ 102.18, 139.56, 149.46, 157.51, 158.35, 159.74 ppm. IR (KBr): ṽ 3401.9, 3383.3, $1692.0,1684.5,1676.7,1438.6,1337.2,1326.0,1316.9,1222.2,813.8,797.2,733.6$ cm^{-1}. Elemental analysis for $\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{11} \mathrm{O}_{6}$ (337.03): calcd C, 24.94; H, 0.90; N, 45.70\%. Found: C 24.95, H 0.88, N 45.71\%.

```
3,3'-(4-nitro-1H-pyrazole-3,5-diyl)bis(5-(1H-pyrazol-4-yl)-1H-1,2,4-triazole) (E2)
```

The synthetic procedure for $\mathbf{E} 2$ was similar to that of $\mathbf{B} \mathbf{2}$, only 4-nitro-1H-pyrazole-3,5dicarbohydrazide (E1) ($0.27 \mathrm{~g}, 1.2 \mathrm{mmol}$) was used instead of B1. E2: ($0.35 \mathrm{~g}, 77 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6): $\delta=8.04$ (s) ppm. ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d6): $\delta=99.99,117.89,134.99,135.52,136.74,164.84 \mathrm{ppm} . \operatorname{IR}(\mathrm{KBr}):$ ṽ 3443.4, 1682.8, $1619.8,1612.8,1593.4,1439.6,1436.3,1341.0,1237.5,1203.8,1050.5,667.5,595.8$
cm^{-1}. Elemental analysis for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{13} \mathrm{O}_{2}$ (379.30): calcd C, $41.17 ; \mathrm{H}, 2.39 ; \mathrm{N}, 48.01 \%$. Found: C 41.18, H 2.37, N 48.02\%.

3,3'-(4-nitro-1H-pyrazole-3,5-diyl)bis(5-(3,5-dinitro-1H-pyrazol-4-yl)-1H-1,2,4triazole) (PBPT)

The synthetic procedure for PBPT was similar to that of B4, only E2 ($0.47 \mathrm{~g}, 0.12$ mmol) was used instead of B3. PBPT ($0.24 \mathrm{~g}, 36 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6): $\delta=6.44$ (br) ppm. ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d6): $\delta=101.53,130.71,133.78$, 147.31, 150.58, 151.60 ppm . IR (KBr): $\tilde{\mathrm{v}} 3393.4,3372.5,3371.8,1712.5,1702.0$, 11674.1, 1665.2, 1650.2, 1339.3, 1336.4, 1312.2, 1306.3, $815 \mathrm{~cm}^{-1}$. Elemental analysis for $\mathrm{C}_{13} \mathrm{H}_{5} \mathrm{~N}_{17} \mathrm{O}_{10}$ (559.29): calcd C, 27.92; H, $0.90 ; \mathrm{N}, 42.58 \%$. Found: C 27.93, H 0.88 , N 42.59\%.

2. Computational details

Computations were performed by using the Gaussian09 suite of programs [1]. The elementary geometric optimization and the frequency analysis were performed at the level of the Becke three parameter, Lee-Yan-Parr (B3LYP) functional with the 6$311+\mathrm{G}^{* *}$ basis set [2-4]. All of the optimized structures were characterized to be local energy minima on the potential surface without any imaginary frequencies. Atomization energies were calculated by the CBS-4M [5]. All the optimized structures were characterized to be true local energy minima on the potential-energy surface without imaginary frequencies.

The predictions of heats of formation (HOF) of compounds used the hybrid DFTB3LYP methods with the $6-311+\mathrm{G}^{* *}$ basis set through designed isodesmic reactions. The isodesmic reaction processes, that is, the number of each kind of formal bond is conserved, were used with the application of the bond separation reaction (BSR) rules. The molecule was broken down into a set of two heavy-atom molecules containing the same component bonds. The isodesmic reactions used to derive the HOF shown in Scheme S1.

DPTO

Scheme S1. The isodesmic reactions for calculating heat of formation.
The change of enthalpy for the reactions at 298 K can be expressed by Equation (1):

$$
\begin{equation*}
\Delta H_{298}=\Sigma \Delta_{\mathrm{f}} H_{\mathrm{P}}-\Sigma \Delta_{\mathrm{f}} H_{\mathrm{R}} \tag{1}
\end{equation*}
$$

Where $\Sigma \Delta_{\mathrm{f}} H_{\mathrm{P}}$ and $\Sigma \Delta_{\mathrm{f}} H_{\mathrm{R}}$ are the $H O F$ of the reactants and products at 298 K , respectively, and ΔH_{298} can be calculated from the following expression in Equation (2):

$$
\begin{equation*}
\Delta H_{298}=\Delta E_{298}+\Delta(P V)=\Delta E_{0}+\Delta Z P E+\Delta H_{\mathrm{T}}+\Delta n R T \tag{2}
\end{equation*}
$$

where ΔE_{0} is the change in total energy between the products and the reactants at 0
$\mathrm{K} ; \triangle Z P E$ is the difference between the zero-point energies $(Z P E)$ of the products and the reactants at $0 \mathrm{~K} ; \Delta H_{\mathrm{T}}$ is the thermal correction from 0 to 298 K . The $\Delta(P V)$ value in Equation (2) is the $P V$ work term. It equals $\Delta n R T$ for the reactions of an ideal gas. For the isodesmic reactions $\Delta n=0$, so $\Delta(P V)=0$. On the left side of Equation (2), apart from target compound all the others are called reference compounds. The HOF of reference compounds are available either from experiments or from the high level computing such as CBS-4M.

Table S1. Calculated zero-point energy (ZPE), thermal correction to enthalpy (HT), total energy (E0) and heats of formation (HOF)

Compound	$\mathrm{E}_{0} / \mathrm{a} . \mathrm{u}$	$Z P E / \mathrm{kJ} \mathrm{mol}^{-1}$	$\Delta \mathrm{H}_{\mathrm{T}} / \mathrm{kJ} \mathrm{mol}^{-1}$	HOF/kJ mol ${ }^{-1}$
DPT	-876.463487	292.68	36.14	470.14
B4	-1137.369522	358.14	46.29	748.38
DPTO	-1341.913565	363.40	53.49	788.49
DPPT	-1510.616356	434.52	60.49	737.21
D4	-2343.448562	760.40	96.68	1626.60
DPBT	-1322.133698	399.20	53.22	723.01
PBPT	-2181.352722	672.35	88.11	1149.88
CH_{4}	-40.5339263	112.26	22.92	-74.60
$\mathrm{CH}_{3} \mathrm{NO}_{2}$	-245.0915559	124.93	11.60	-80.80
$\mathrm{CH}_{3} \mathrm{CH}_{3}$	-79.8565413	187.31	11.79	-84.00
Pyrazole anion	-225.669742	141.88	12.21	163.33
$\begin{gathered} \stackrel{N}{N}= \\ \mathrm{HN}_{V}=\mathrm{NH}^{+} \end{gathered}$	-242.669331	184.02	12.27	831.72
$\stackrel{<_{N-N H}^{N}}{-}$	-242.320387	150.39	12.06	192.70
$\underset{\substack{\mathrm{N}-\mathrm{NH}}}{\substack{2 \\ 2}}$	-226.260331	179.20	12.57	177.40
$\mathrm{N}^{\mathrm{O}, \mathrm{~N}}$	-262.1183629	114.62	11.84	215.70

Reference

[1] M. J. Frisch. Gaussian 09, Revision D. 01 (Gaussian Inc., 2009).
[2] A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652
[3] P. J. Stephens; F. J. Devlin; C. F. Chabalowski; M. J. Frisch. J. Phys. Chem. 1994, 98, 11623-11627.
[4] P. C. Hariharan; J. A. Pople, Theor. Chim. Acta. 1973, 28, 213-222.
[5] J. W. Ochterski; G. A. Petersson ; J. A . Montgomery, J. Chem. Phys. 1996, 104, 2598-2619.

3. Crystallographic data

Table S2. Crystallographic data for DPT, DPTO, PPBTBT and PBPT.

Crystal	DPT $\cdot \mathrm{H}_{2} \mathrm{O}$	DPTO DMSO	D4• 4 DMSO	PBPT $\cdot 6.375 \mathrm{H}_{2} \mathrm{O}$
CCDC number	2240058	2240059	2240060	2157697
Empirical Formula	$\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{7} \mathrm{O}_{4}$	$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{10} \mathrm{O}_{8} \mathrm{~S}$	$\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{22} \mathrm{O}_{12} \mathrm{~S}_{4}$	$\mathrm{C}_{26} \mathrm{H}_{35.5} \mathrm{~N}_{34} \mathrm{O}_{32.75}$
Formula weight	243.16	416.31	922.92	1348.38
Temperature [K]	150.0	193.0	193.0	193.0
Crystal system	monoclinic	monoclinic	monoclinic	triclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{c}$	C2/c	$\mathrm{P} 21 / \mathrm{n}$	P-1
a / \AA	8.0502(9)	14.8387(6)	13.3925(10)	12.8475(2)
b / \AA	7.1414(11)	10.0023(6)	9.5809(8)	13.8913(3)
c / \AA	16.024(3)	22.8813 (11)	15.0000 (11)	15.5935(3)
$\alpha /{ }^{\circ}$	90	90	90	94.3860 (10)
$\beta /{ }^{\circ}$	98.172(8)	104.593(5)	99.347(8)	104.9360(10)
$\gamma /{ }^{\circ}$	90	90	90	99.5510(10)
Cell volume (\AA^{3})	911.8(2)	3286.3(9)	1899.1(3)	2630.80(9)
Crystal	DPT. $\mathrm{H}_{2} \mathrm{O}$	DPTO ${ }^{\text {DMSO }}$	D4.4DMSO	PBPT $\cdot 6.375 \mathrm{H}_{2} \mathrm{O}$
Density ($\mathrm{g} \mathrm{cm}^{-3}$)	1.771	1.683	1.614	1.702
$\mu\left(\mathrm{mm}^{-1}\right)$	0.158	2.421	0.214	1.384
F (000)	496.0	1696.0	750.0	1383.0
Crystal Size (mm^{3})	$0.11 \times 0.06 \times 0.04$	$\begin{gathered} 0.13 \times 0.12 \times 0.1 \\ 1 \end{gathered}$	$0.13 \times 0.12 \times 0.10$	$0.12 \times 0.1 \times 0.1$
2θ range for data collection $\left({ }^{\circ}\right)$	5.136 to 52.798	$\begin{aligned} & 7.986 \text { to } \\ & 136.994 \end{aligned}$	2.532 to 27.507	5.912 to 136.688
Index ranges	$\begin{aligned} & -10 \leq h \leq 8 \\ & -8 \leq k \leq 8 \\ & -20 \leq 1 \leq 19 \end{aligned}$	$\begin{gathered} -13 \leq h \leq 17 \\ -12 \leq \mathrm{k} \leq 11 \\ -27 \leq 1 \leq 26 \end{gathered}$	$\begin{gathered} -17 \leq \mathrm{h} \leq 17, \\ -12 \leq \mathrm{k} \leq 12, \\ -19 \leq 1 \leq 18 \end{gathered}$	$\begin{aligned} & -14 \leq h \leq 15, \\ & -16 \leq k \leq 16, \\ & -18 \leq 1 \leq 18 \end{aligned}$
Reflections collected	8280	12557	20190	35906
Independent reflections	$\begin{gathered} 1848 \\ {\left[\mathrm{R}_{\text {int }}=0.0431\right.} \\ \left.\mathrm{R}_{\text {sigma }}=0.0362\right] \end{gathered}$	$\begin{gathered} 3006 \\ {\left[\mathrm{R}_{\mathrm{int}}=0.0501,\right.} \\ \mathrm{Rs}_{\mathrm{igma}}= \\ 0.0367] \end{gathered}$	$\begin{gathered} 4350 \\ {\left[\mathrm{R}_{\text {int }}=0.0772\right.} \\ \left.\mathrm{R}_{\text {sigma }}=0.0545\right] \end{gathered}$	$\begin{gathered} 9610 \\ {\left[\mathrm{R}_{\text {int }}=0.0592,\right.} \\ \mathrm{R}_{\text {sigma }}= \\ 0.0492] \end{gathered}$
Data/restraints/parameters	1848/0/161	3006/0/263	4350/24/254	9610/0/881
Goodness-of-fit on F^{2}	1.080	1.056	1.064	1.024
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0403$,	$\mathrm{R}_{1}=0.0364$,	$\mathrm{R}_{1}=0.0886$,	$\mathrm{R}_{1}=0.0501$,

Final R indexes [all data]	$\mathrm{wR}_{2}=0.0950$	$\mathrm{wR}_{2}=0.1001$	$\mathrm{wR}_{2}=0.2532$	$\mathrm{wR}_{2}=0.1280$
	$\mathrm{R}_{1}=0.0563$,	$\mathrm{R}_{1}=0.0400$,	$\mathrm{R}_{1}=0.1373$	$\mathrm{R}_{1}=0.0609$,
	$\mathrm{wR}_{2}=0.1049$	$\mathrm{wR}_{2}=0.1015$	$\mathrm{wR}_{2}=0.2953$	$\mathrm{wR}_{2}=0.1354$

Table S3. Bond angles for DPT.

Atom	Atom	Atom	Angle $/{ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
H5A	-O5	-H5B	109.00	N3	-C1	-C2	106.3(3)
N2	-N1	-C3	107.8(1)	N2	-C1	-N3	122.3(3)
N1	-N2	--C1	106.6(1)	N2	-C1	-C2	131.1(2)
O3	-N3	-C1	117.4(2)	C3	-C2	-C4	106.5(2)
O4	-N3	--C1	118.7(2)	C1	-C2	-C3	133.3(2)
O3	-N3	-C4	123.8(2)	C1	-C2	-C4	109.4(2)
O1	-N4	-C3	118.1(1)	N1	-C3	-N4	117.2(3)
O2	-N4	-C3	128.9(2)	N1	-C3	-C2	116.1(2)
O1	-N4	-O2	124.9(2)	N4	-C3	-C2	120.6(2)
N6	-N5	-C5	123.7(2)	N5	-C4	-C2	123.3(3)
N5	-N6	-C5	111.2(2)	N7	-C4	-C2	109.9(3)
C4	-N7	-H6	106.4(2)	N5	-C4	-N7	122.2(2)
C5	-N6	-H6	128.2(2)	N6	-C5	-N7	127.9(3)
N5	-N6	-H7	120.3(2)	N6	-C5	-H5	109.5(2)
C5	-N7	-H7	127.00	N7	-C5	-H5	119.5(3)

Table S4. Hydrogen bonds for DPT.

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{d}(\mathrm{D}-\mathrm{H}) / \AA$	$\mathrm{d}(\mathrm{H} \cdots \mathrm{A}) / \AA$	$\mathrm{d}(\mathrm{D} \cdots \mathrm{A}) / \AA$	$<(\mathrm{DHA}) /{ }^{\circ}$
$\mathrm{O} 5-\mathrm{H} 5 \mathrm{~A} \cdots \mathrm{O} 3$	0.8700	2.0800	$2.941(2)$	173.00
$\mathrm{O} 5-\mathrm{H} 5 \mathrm{~B} \cdots \mathrm{~N} 2$	0.8700	2.0900	$2.954(2)$	172.00
$\mathrm{~N} 6-\mathrm{H} 6 \cdots \mathrm{O} 1$	$1.08(3)$	$2.45(3)$	$3.063(2)$	$115.2(17)$
$\mathrm{N} 6-\mathrm{H} 6 \cdots \mathrm{~N} 1$	$1.08(3)$	$1.65(3)$	$2.706(2)$	$165(2)$
$\mathrm{N} 7-\mathrm{H} 7 \cdots \mathrm{O} 5$	0.8800	1.8500	$2.688(2)$	159.00
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 1$	0.9500	2.5000	$3.409(2)$	159.00

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{d}(\mathrm{D}-\mathrm{H}) / \AA$	$\mathrm{d}(\mathrm{H} \cdots \mathrm{A}) / \AA$	$\mathrm{d}(\mathrm{D} \cdots \mathrm{A}) / \AA$	$<(\mathrm{DHA}) /{ }^{\circ}$
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 2$	0.9500	2.5000	$3.149(2)$	125.00

Table S5. Torsion angles for DPTO.

Parameter	Bond angles (\AA)	Parameter	Bond angles (\AA)
N3-O1-N2-C1	$1.00(19)$	C4-C5-C6-N7	$-2.9(3)$
N2-O1-N3-C2	$-1.05(18)$	C4-C5-C6-N8	$176.8(16)$
O2-N1-C1-N2	$47.0(3)$	C7-C5-C6-N7	$-179.4(17)$
O2-N1-C1-C2	$-134.6(3)$	C7-C5-C6-N8	$0.29(19)$
O3-N1-C1-N2	$-131.2(2)$	C4-C5-C7-N9	$-177.4(17)$
O3-N1-C1-C2	$47.1(3)$	C4-C5-C7-N10	$-1.7(3)$
N6-C4-C5-C6	$120.1(2)$	C6-C5-C7-N9	$-1.15(18)$
N6-C4-C5-C7	$-64.4(3)$	C6-C5-C7-N10	$174.6(17)$

Table S6. Torsion angles for D4.

Parameter	Bond angles (\AA)	Parameter	Bond angles (\AA)
O1-N4-C11-C12	$-176.0(7)$	N2-N3-C11-N4	$-179.6(4)$
O1-N4-C11-N3	$3.6(7)$	N2-N3-C11-C12	$0.0(5)$
O2-N4-C11-N3	$-177.5(4)$	C15-N7-C8-N10	$-1.0(4)$
O2-N4-C11-C12	$3.0(7)$	C15- N7-C8-C14	$175.2(4)$
O5-N1-C10-N2	$-173.5(4)$	C8- N7-C15-N11	$0.9(4)$
O5-N1-C10-C12	$7.0(7)$	C8-N7-C15-N1012	$-177.7(4)$
N3-N2-C10-N1	$177.2(4)$	C14- N9-C13-N6	$-0.7(4)$
N3-N2-C10-C12	$-0.8(5)$	C14- N9-C13-C12	$175.6(4)$

Table S7. Torsion angles for PBPT.

Parameter	Bond angles (\AA)	Parameter	Bond angles (\AA)
N2-N1-C3-N3	$176.4(19)$	O3-N4-C1-N2	$23.6(3)$
N2-N1-C3-C2	$0.2(3)$	O3-N4-C1-C2	$-159.2(2)$
N1-N2-C1-N4	$177.1(19)$	O4-N4-C1-N2	$-156.2(2)$

N1-N2-C1-C2	$-0.5(3)$	O4-N4-C1-C2	$21.1(2)$
O1-N3-C3-N1	$8.9(3)$	C5-N7-C4-N5	$0.5(3)$
O1-N3-C3-C2	$-175.8(2)$	C5-N7-C4-C2	$-177.9(2)$
O2-N3-C3-N1	$-170.4(2)$	C4-N7-C5-N6	$-0.4(2)$
O2-N3-C3-C2	$5.0(4)$	C4-N7-C5-C6	$-179.2(2)$

Table S8. Hydrogen bonds for PBPT.

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{d}(\mathrm{D}-\mathrm{H}) / \AA$	$\mathrm{d}(\mathrm{H} \cdots \mathrm{A}) / \AA$	$\mathrm{d}(\mathrm{D} \cdots \mathrm{A}) / \AA$	$<(\mathrm{DHA}) /{ }^{\circ}{ }^{\circ}$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 31$	0.8800	1.7600	$2.640(3)$	173.00
$\mathrm{~N} 6-\mathrm{H} 6 \cdots \mathrm{O} 5$	0.8800	2.1600	$2.783(3)$	128.00
$\mathrm{~N} 6-\mathrm{H} 6 \cdots \mathrm{O} 28$	0.8800	2.1100	$2.849(3)$	141.00
$\mathrm{~N} 9-\mathrm{H} 9 \cdots \mathrm{O} 27$	0.8800	1.8100	$2.654(3)$	161.00
$\mathrm{~N} 13-\mathrm{H} 13 \cdots \mathrm{O} 24$	0.8800	1.9100	$2.762(3)$	162.00
$\mathrm{~N} 15-\mathrm{H} 15 \cdots \mathrm{O} 26$	0.8800	1.7000	$2.526(3)$	156.00

4. Spectrums of compounds.

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectra in DMSO-d6 for A3.

Figure S2. ${ }^{13} \mathrm{C}$ NMR spectra in DMSO-d6 for A3.
$\stackrel{\bar{\circ}}{\circ}$
$\stackrel{\varrho}{6}$
$\stackrel{\circ}{i}$

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectra in DMSO-d6 for DPT.

Figure S4. ${ }^{13} \mathrm{C}$ NMR spectra in DMSO-d6 for DPT.

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectra in DMSO-d6 for $\mathbf{B 2}$.

Figure S6. ${ }^{13} \mathrm{C}$ NMR spectra in DMSO-d6 for B2.
$\underset{\infty}{\cong} \quad \stackrel{\bar{\sim}}{\sim}$

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectra in DMSO-d6 for $\mathbf{B 3}$.

Figure S8. ${ }^{13} \mathrm{C}$ NMR spectra in DMSO-d6 for B3.

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectra in DMSO-d6 for $\mathbf{B 4}$.

Figure S10. ${ }^{13} \mathrm{C}$ NMR spectra in DMSO-d6 for B4.
$\stackrel{\bar{\sim}}{\sim}$
\qquad

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectra in DMSO-d6 for DPTO.

Figure S12. ${ }^{13} \mathrm{C}$ NMR spectra in DMSO-d6 for DPTO.

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectra in DMSO-d6 for $\mathbf{C 2}$.

$$
\begin{aligned}
& \text { Non̄o } \\
& -114.35
\end{aligned}
$$

Figure S14. ${ }^{13} \mathrm{C}$ NMR spectra in DMSO-d6 for $\mathbf{C 2}$.

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectra in DMSO-d6 for DPPT.

Figure S16. ${ }^{13} \mathrm{C}$ NMR spectra in DMSO-d6 for DPPT.

Figure S17. ${ }^{1}$ H NMR spectra in DMSO-d6 for D2.

Figure S18. ${ }^{13} \mathrm{C}$ NMR spectra in DMSO-d6 for D2.

```
\(\underset{\substack{\infty \\ \hline}}{\sim}\)
```

$\stackrel{8}{+}$
$\stackrel{5}{\sim}$

Figure S19. ${ }^{1} \mathrm{H}$ NMR spectra in DMSO-d6 for D3.

Figure S20. ${ }^{13} \mathrm{C}$ NMR spectra in DMSO-d6 for D3.

Figure S21. ${ }^{1} \mathrm{H}$ NMR spectra in DMSO-d6 for D4.

Figure S22. ${ }^{13} \mathrm{C}$ NMR spectra in DMSO-d6 for D4.

Figure S23. ${ }^{1} \mathrm{H}$ NMR spectra in DMSO-d6 for DPBT.

Figure S24. ${ }^{13} \mathrm{C}$ NMR spectra in DMSO-d6 for DPBT.

Figure S25. ${ }^{1} \mathrm{H}$ NMR spectra in DMSO-d6 for $\mathbf{E 3}$.

ホ

Figure S26. ${ }^{13} \mathrm{C}$ NMR spectra in DMSO-d6 for E3.

Figure S27. ${ }^{1} \mathrm{H}$ NMR spectra in DMSO-d6 for PBPT.

Figure S28. ${ }^{13} \mathrm{C}$ NMR spectra in DMSO-d6 for PBPT.
5. DSC and TG of compounds

Figure S29 TG and DSC of DPT

Figure S30 TG and DSC of B4

Figure S31 TG and DSC of DPTO

Figure S32 TG and DSC of DPPT

Figure S33 TG and DSC of D4

Figure S34 TG and DSC of DPBT

Figure S35 TG and DSC of PBPT

