Supporting information

Fully recyclable high-performance polyacrylsemicarbazide/carbon fiber composites
Zhiwen Jian, Xiaokang Zhang, Xi Yang, Yindong Wang, Zhanhua Wang, Xili Lu*, Hesheng Xia*
State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China, Email: xililu@scu.edu.cn; xiahs@scu.edu.cn

Table of contents
Experiment section 2
Supporting figures 2-4
Supporting tables 4-5

Synthesis of ASC model compound (2-benzoyl-N-cyclohexylhydrazine-1carboxamide): $3 \mathrm{~g}(3.22 \mathrm{mmol})$ of benzoylhydrazide and 20 mL of tetrahydrofuran (THF) were added to a 50 mL flask to form a suspension. Then 3.03 g cyclohexane isocyanate (CHI, 24 mmol) was added to the suspension under vigorous stirring. The system became a clear and transparent solution within a few seconds, and then the product was immediately precipitated from the solution. After stirring slowly at room temperature for 12 h , the precipitate was collected by vacuum filtration and the filter cake was washed three times with cold THF. The resulting powder was dried in vacuo at $45^{\circ} \mathrm{C}$ for 24 h to obtain 4.8 g ASC model compound as a white solid with a yield of $\sim 79.6 \%$. The ${ }^{1} \mathrm{H}$ NMR spectrum of the product is shown in Figure S3a.
${ }^{1} \mathrm{H}$ NMR study of the small model compounds: 2-benzoyl-N-cyclohexylhydrazine-1-carboxamide ($0.18 \mathrm{mmol}, 0.047 \mathrm{~g}$) and 4-methoxybenzoylhydrazide $(0.18 \mathrm{mmol}$, 0.030 g) were dissolved in 5 mL DMSO-d6. The resulting solution was divided in 7 NMR tubes. The 7 samples were reacted at $120^{\circ} \mathrm{C}$ for $0,3,5,7,10,15$ and 30 h respectively, then were measured with ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Figure S1 ${ }^{1} \mathrm{H}$ NMR spectra of L-IPDI-IPDH (a), L-HMDI-IPDH (b), L-MDI-IPDH(c).

Figure S2 (a) Mechanical properties of PASC-ADH HMDI-0.09 material before and after soaking in water for 24 h at room temperature; (b) The absorption peaks of $\mathrm{C}=\mathrm{O}$ for L-HMDI-IPDH, L-IPDI-IPDH and L-MDI-IPDH.
a
2-benzoyl-N-cyclohexylhydrazine-1-carboxamide

b
c

Figure S3 (a) ${ }^{1} \mathrm{H}$ NMR spectrum of 2-benzoyl-N-cyclohexylhydrazine-1-carboxamide (b) schematic illustration of the exchange reaction between model compound 2-benzoyl-N-cyclohexylhydrazine-1-carboxamide and 4methoxybenzoylhydrazide; (c) ${ }^{1} \mathrm{H}$ NMR spectra as a function of time.

PASC-IPDI-IPDH-1

PASC-IPDI-IPDH-3

PASC-IPDI-IPDH-5

Figure S4 The optical pictures showing the dimensional stability of PASC materials with different crosslinking index in conventional solvents.

Table S1 Mechanical properties of L-IPDI-IPDH, L-HMDI-IPDH, L-MDI-IPDH, PASC-ADH-HMDI-0.09 and the Mn measured by GPC

Sample	Initial modulus (GPa)	Stress at break (MPa)	Strain at break (\%)	Mn
L-IPDI-IPDH	3.3 ± 0.2	71.1 ± 14.1	2.7 ± 0.5	12962
L-IPDI-IPDH wet	3.3 ± 0.2	65.6 ± 8.5	2.04 ± 0.1	
(RT, 30 d)	(102.8 \%)	(92.3 \%)	(75.6\%)	
L-IPDI-IPDH wet	2.1 ± 0.2	31.5 ± 4.3	2.2 ± 0.3	
($60{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$)	(62.0\%)	(44.3\%)	(82.9\%)	
L-HMDI-IPDH	2.4 ± 0.2	97.3 ± 11.6	11.3 ± 0.6	11136
L-HMDI-IPDH wet	2.5 ± 0.3	81.8 ± 6.3	14.8 ± 3.7	
$(\mathrm{RT}, 30 \mathrm{~d})$	(108.5\%)	(84.1\%)	$\text { (} 131.5 \% \text {) }$	
L-HMDI-IPDH wet	1.1 ± 0.2	33.8 ± 5.4	11.7 ± 4.3	
($60{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$)	(45.3\%)	(34.7%)	(103.9\%)	
L-MDI-IPDH	2.3 ± 0.4	102.6 ± 1.7	5.9 ± 1.6	16557
L-MDI-IPDH wet	2.7 ± 0.2	92.6 ± 2.9	8.3 ± 0.9	
(RT, 30 d)	(115.3 \%)	(90.3\%)	(39.7\%)	
L-MDI-IPDH wet	1.3 ± 0.2	24.9 ± 5.1	2.4 ± 0.3	
$\left(60{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}\right)$	$\text { (} 54.0 \% \text {) }$	(24.3%)	(39.7%)	
PASC-ADH-HMDI-0.09	2.4 ± 0.4	110 ± 2.7	8.1 ± 0.8	
PASC-ADH-HMDI-0.09wet	1.8 ± 0.2	62 ± 1.2	3.3 ± 0.9	
(RT, 24 h)	(75\%)	(56\%)	(41\%)	

Table S2 Summary of the assignment of the deconvoluted subpeaks in the FTIR C=O absorption bands for the L-

IPDI-IPDH, L-HMDI-IPDH and L-MDI-IPDH.

	L-IPDI-IPDH		L-HMDI-IPDH		L-MDI-IPDH	
	Peak area	Peak position	Peak area	Peak position	Peak area	Peak position
Free $\mathbf{C}=0$	1.2 ± 0.6	1710.1 ± 1.8	2.8 ± 0.3	1721.1 ± 0.3	3.5 ± 0.9	1719.2 ± 2.1
Disordered Hbonded	10.3 ± 2.6	1679.1 ± 0.9	$\begin{gathered} 28.4 \pm \\ 1.8 \end{gathered}$	1677.1 ± 0.3	$\begin{gathered} 24.3 \pm \\ 2.4 \end{gathered}$	1675.4 ± 0.9
Ordered H-bonded	45.1 ± 2.7	1659.6 ± 0.8	$\begin{gathered} 37.9 \pm \\ 1.8 \end{gathered}$	1657.9 ± 0.3	$\begin{gathered} 27.6 \pm \\ 2.8 \end{gathered}$	1657.3 ± 0.7
the fractions of H-bonded		9 \%		\% 9	9	6 \%
Proportion of ordered hydrogen bonds	81.5 \%		57.2 \%		53.2 \%	

Table S3 Mechanical properties of carbon fiber prepreg with different resin content

Sample	Initial modulus $\mathbf{(G P a)}$	Stress at break $\mathbf{(M P a)}$	Strain at break $\mathbf{(\%)}$
CFRP-60\% prepreg	36.8 ± 3.1	472.6 ± 25.6	1.8 ± 0.2
CFRP-50\% prepreg	37.7 ± 4.9	378.1 ± 38.4	1.5 ± 0.1
CFRP-40\% prepreg	20.1 ± 1.8	231.2 ± 25.3	2.5 ± 1.3

Table S4 Flexural properties of carbon fiber double-layer laminates with different resin content

Sample	Flexural modulus $\mathbf{(G P a)}$	Flexural stress $\mathbf{(M P a)}$	Flexural strain $\mathbf{(\%)}$
2-CFRP-60\%	27.7 ± 5.7	157.3 ± 7.3	0.8 ± 0.3
2-CFRP-50\%	29.8 ± 2.1	326.9 ± 37.4	2.01 ± 0.4
2-CFRP-40\%	12.7 ± 1.5	243.8 ± 7.4	2.96 ± 0.2

