Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Efficient Removal of Short-Chain and Long-Chain PFAS by Cationic Nanocellulose

Duning Li¹, Cheng-Shiuan Lee^{2,3}, Yi Zhang², Rasel Das¹, Fahmida Akter¹,

Arjun K. Venkatesan^{2,4,*}, and Benjamin S. Hsiao^{1,*}

¹Department of Chemistry, Stony Brook University, Stony Brook, NY 11790, USA

²New York State Center for Clean Water Technology, Stony Brook University, Stony Brook,

NY 11794, USA

³Research Center for Environmental Changes, Academia Sinica, Taipei 115, Taiwan

⁴School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY

11794, USA

*Corresponding authors:

Email address: arjun.venkatesan@stonybrook.edu (A. K. Venkatesan),

benjamin.hsiao@stonybrook.edu (B. S. Hsiao)

CONTENTS

Text:

Text S1. Fourier-Transform Infrared Spectroscopy (FTIR)

Text S2. X-Ray Diffraction (XRD)

Text S3. Conductivity Titration

Text S4. Zeta Potential Measurement

Text S5. Surface Area Measurement

Text S6. Electron Microscopy

Figures:

Figure S1. Zeta potential values for QNC 12:1 under different pH values.

Figure S2. Zeta potential values for QNC 12:1 after PFOA adsorption.

Figure S3. XRD profiles for wood pulp, QNC 9:1-a, QNC 9:1-b and QNC 12:1.

Figure S4. NaCl ion test for four different PFASs on QNC.

Tables:

Table S1. Basic information for the ground water sample in Long Island, NY.

Table S2. The PFAS quantitatively analysis results using the ground water (GW) samples.

Table S3. LC-MS/MS operating conditions and corresponding parameters.

Table S4. Precursor and product ions of PFAS: (a) native compounds and (b) corresponding

internal standards. Product ion 1 is for quantification and product ion 2 is for confirmation.

Table S5. The kinetic data for (a) PFOA; (b) PFBA; (c) PFOS; (d) PFBS.

Table S6. The isotherm data for (a) PFOA; (b) PFBA; (c) PFOS; (d) PFBS.

Table S7. The displacement study for (a) PFBS/PFOS system; (b) PFBA/PFOA system.

 Table S8. The competition study for (a) PFBS/PFOS system; (b) PFBA/PFOA system.

Table S9. Adsorption experiment with 1 mM and 0.1M NaCl ion

Text S1. Fourier-Transform Infrared Spectroscopy (FTIR)

ALPHA FT-IR Spectrometer (Bruker Optics Inc.) was used to detect the functional groups of wood pulp and QNC samples over the wavelength range of 400-4000 cm⁻¹s. The attenuated total reflectance (ATR) mode was used to study the samples in the solid form.

Text S2. X-Ray Diffraction (XRD)

XRD patterns of varying samples were measured by a Rigaku MiniFlex 600 Benchtop X-ray Diffractometer with diffraction angle from $5^{\circ} \le 2\theta \le 40^{\circ}$ at a scanned rate of 10° min⁻¹. The instrument was powered by the Cu K α radiation ($\lambda = 0.154$ nm through a Ni filter) generated at 40 kV and 40 mA. The crystallinity index (CI) was calculated as the ratio between the area of the crystalline peaks (A_{cr})and the total area (A_{total}) under the diffraction profile, as expressed by the following equation:

$$CI = \frac{A_{cr}}{A_{total}} \times 100\%$$
(1)

Individual crystalline peaks were extracted by the peak deconvolution method. The chosen peak fitting program was developed in Python, which utilized Lorentzian functions to fit each crystalline peak. A broad background peak attributed to the amorphous phase centered around 21.5° (1.52 Å⁻¹) was also fitted with a Gaussian function.¹ The XRD data indicated the all observed crystal structure was cellulose I.²

Text S3. Conductivity Titration

Conductivity titration on the QNC suspension was carried out as follows. About 100 mL of 0.01 M silver nitrate solution was prepared prior the titration. Subsequently, 50 mL of

0.03 wt% QNC suspension was stirred for 10 min and was titrated with 0.5 mL silver nitrate at a 30 s interval. The number of quaternary ammonium groups equal to the chloride ions was determined by the volume of silver nitrate used for each sample.³

Text S4. Zeta Potential Measurement

A Zetaprobe Analyzer (Colloid Dynamics, LLC) was used to measure the zeta potential of wood pulp and QNC samples. The probe was first washed and calibrated using the standard zeta probe polar solution (KSiW 0.26 mS/m solution). Then around 280 mL of 0.1 wt% QNC suspension was filled in the sample holder to conduct 10 consecutive measurements under magnetic stirring. The reported zeta potential value was based on the average number of 10 measurements at pH = 6-7. For the measurement under different pH condition, 0.1 mol of HCl and NaOH was used to adjust the pH level from 2-10.

Text S5. Surface Area Measurement

The surface area of QNC samples was determined by the N₂ adsorption isotherm curve using Quantachrome NOVAtouch LX2 analyzer, equipped with degasser and Brunauer– Emmett–Teller (BET) analyzer units. Before the measurement, the sample went through the degassing process at 100 °C (initiated at a heated rate of 10 °C/min) for 12 h under a dry N₂ gas flow. The full BET isotherm measurement (0.05 – 0.99 *P/P_o*, where *P/P_o* represents the relative pressure) was performed under helium using the fine powder model, where the specific surface area was analyzed by applying the multi-points BET adsorption–desorption isotherm model in the range of 0.05 - 0.35 P/P_o.

Text S6. Electron Microscopy

To study the morphology and fiber size of the pristine cellulose and QNC, scanning electron microscope (SEM) (Hitachi 4800, Japan) and transmission electron microscope (TEM) (JEOL 1400 LaB6 Soft Bio TEM, Japan) were used, respectively. Air dried pristine cellulose and freeze-dried QNC were selected for SEM analysis. For TEM measurements, samples were prepared by using 0.005% concentration and 10 μ L of QNC suspension, casted on copper grids (300 mesh, Ted Pella Inc.). All TEM samples were stained using a 0.2 μ L of 2.0 wt% uranyl acetate solution.

Figure S1. Zeta potential values for QNC 12:1 under different pH values.

Figure S2. Zeta potential values for QNC 12:1 after PFOA adsorption. (1.6 mL 0.03 wt% of QNC plus 20, 40 and 60 µl of 1g/L PFOA)

Figure S3. XRD profiles for wood pulp, QNC 9:1-a, QNC 9:1-b and QNC 12:1.

Figure S4. NaCl ion test for four different PFASs on QNC. (For PFOS/PFOA, $C_o = 2$ ppm, QNC = 32 mg/L; for PFBS/PFBA, $C_o = 10$ ppm, QNC = 320 mg/L

Table S1. Basic information for the ground water sample in Long Island, NY

Water quality parameter	Long Island groundwater
Conductivity (µS/cm)	25.8
ORP (mV)	117
Chloride (mg/L)	7.3
Sulfate (mg/L)	6.09
Total Organic Carbon (mg C/L)	2.59
Ammonia (mg N/L)	0.03
TKN (mg N/L)	BDL
Nitrate + Nitrite (mg N/L)	0.57
Nitrite (mg N/L)	0.01
Orthophosphate (mg P/L)	BDL

PFAS Compound	GW Back- ground (µg/L)	GW with 32 mg/L Gel (µg/L)	GW with 80 mg/L Gel (µg/L)	GW with 160 mg/L Gel (μg/L)	GW with 320 mg/L Gel (µg/L)	GW with 640 mg/L Gel (μg/L)
PFBA (C3)	0.153	0.142	0.149	0.153	0.168	0.169
PFPeA (C4)	0.321	0.301	0.300	0.299	0.316	0.298
PFBS (C4)	0.675	0.589	0.588	0.477	0.513	0.396
4-2FTS (C4)	0.037	0.032	0.028	0.026	0.025	0.020
PFHxA (C5)	1.357	1.130	1.087	0.955	0.937	0.704
PFPeS (C5)	0.736	0.360	0.281	0.134	0.061	0.035
PFHpA (C6)	0.184	0.073	0.063	0.031	<0.010	<0.010
PFHxS-total (C6)	3.449	0.200	0.172	0.059	0.040	<0.010
6-2FTS (C6)	0.891	0.036	0.034	0.012	<0.010	<0.010
PFOA (C7)	0.211	<0.010	<0.010	<0.010	<0.010	<0.010
PFHpS (C7)	0.094	<0.010	<0.010	<0.010	<0.010	<0.010
PFOS-total (C8)	3.578	0.032	0.028	0.029	0.030	0.029
8-2FTS (C8)	0.038	<0.010	<0.010	<0.010	<0.010	<0.010

Table S2. The PFAS quantitatively analysis results using the ground water (GW) samples.

*The bold face number means the value was below the detection limit of the LC-MS instrument as 0.01 µg/L.

LC Experimental Condit	ions	
Parameter	Value	
LC	Agilent G712	0A 1290 Binary Pump
	Agilent G711	6A 1260 Multi-column Thermostat
	Agilent G716	7A 1260 Multi-sampler
Analytical Column	Agilent ZOB	RAX Eclipse Plus C18
	3.0 x 50 mm,	1.8 μm
Delayed Column	Agilent ZOB	RAX Eclipse Plus C18
	4.6 x 50 mm,	3.5 µm
Column Temperature	50 °C	
Injection Volume	5 μL	
Mobile Phase	(A) 5 mM An	nmonium Acetate in Water
	B() 100% Me	thanol
Flow Rate	0.4 mL/min	
Gradient	Time (min)	%B
	0.0	10
	0.5	10
	2.0	30
	14.0	95
	14.5	100
Stop Time	16.5 min	
Post Time	6 min	
MS Instrument Conditio	ns	
Parameter	Value	
MS	Agilent 6495	Triple Quadrupole MS/MS
	Agilent Jet St	ream ESI source
Gas Temperature	175 °C	
Gas Flow	17 L/min	
Nebulizer	20 psi	
Sheath Gas Temperature	275 °C	
Sheath Gas Flow	11 L/min	
Capillary Voltage (Neg)	2500 V	
Nozzle Voltage (Neg)	0 V	
iFunnel		
High Pressure RF (Neg)	90 V	
Low Pressure RF (Neg)	40 V	

 Table S3. LC-MS/MS operating conditions and corresponding parameters.

Table S4. Precursor and product ions of PFAS: (a) native compounds and (b) corresponding internal standards. Product ion 1 is for quantification and product ion 2 is for confirmation.

(a)						
#	PFAS	Compound Name	Precursor	Product 1	Product 2	Isotopically
	Analyte		(m/z)	(m/z)	(m/z)	Labeled
						Internal
						Standard
1	PFBA	Perfluorobutanoic acid	213	169	-	¹³ C ₄ -PFBA
2	PFPeA	Perfluoropentanoic acid	263	219	-	¹³ C ₅ -PFPeA
3	PFBS	Perfluorobutanesulfonic	299	80	99	¹³ C ₃ -PFBS
		acid				
4	PFHxA	Perfluorohexanoic acid	313	269	119	¹³ C ₅ -PFHxA
5	4:2 FTS	1H,1H,2H,2H-	327	307	81	¹³ C ₂ -4:2FTS
		Perfluorohexane sulfonic				
		acid				
6	PFPeS	Perfluoropentanesulfonic	349	80	99	¹³ C ₃ -PFHxS
		acid				
7	PFHpA	Perfluoroheptanoic acid	363	319	169	¹³ C ₄ -PFHpA
8	PFHxS	Perfluorohexanesulfonic	399	80	99	¹³ C ₃ -PFHxS
		acid				
9	PFOA	Perfluorooctanoic acid	413	369	169	¹³ C ₈ -PFOA
10	6:2 FTS	1H,1H,2H,2H-	427	407	81	¹³ C ₂ -6:2FTS
		Perfluorooctane sulfonic				
		acid				
11	PFHpS	Perfluoroheptanesulfonic	449	80	99	¹³ C ₈ -PFOS
		acid				
12	PFOS	Perfluorooctanesulfonic	499	80	99	¹³ C ₈ -PFOS
		acid				
13	8:2 FTS	1H,1H,2H,2H-	527	507	81	¹³ C ₂ -8:2FTS
		Perfluorodecane sulfonic				
		acid				

S11

(b)				
#	PFAS	Compound Name	Precursor	Product 1
	Isotope		(m/z)	(m/z)
1	¹³ C4-	Perfluoro-n-[1,2,3,4- ¹³ C ₄]butanoic acid	217	172
	PFBA			
2	¹³ C ₅ -	Perfluoro-n-[1,2,3,4,5- ¹³ C5]pentanoic acid	268	223
	PFPeA			
3	¹³ C ₃ -	Sodium perfluoro-1-[2,3,4-	302	80
	PFBS	¹³ C ₃]butanesulfonate		
4	¹³ C ₅ -	Perfluoro-n-[1,2,3,4,6- ¹³ C5]hexanoic acid	318	273
	PFHxA			
5	¹³ C ₂ -	Sodium 1H,1H,2H,2H-perfluoro-1-[1,2-	329	309
	4:2FTS	¹³ C ₂]hexane sulfonate		
6	¹³ C ₄ -	Perfluoro-n-[1,2,3,4- ¹³ C ₄]heptanoic acid	367	322
	PFHpA			
7	¹³ C ₃ -	Sodium perfluoro-1-[1,2,3-	402	80
	PFHxS	¹³ C ₃]hexanesulfonate		
8	¹³ C ₈ -	Perfluoro-n-[¹³ C ₈]octanoic acid	421	376
	PFOA			
9	¹³ C ₂ -	Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]-	429	409
	6:2FTS	octane sulfonate		
10	¹³ C ₈ -	Sodium perfluoro-[¹³ C ₈]octanesulfonate	507	80
	PFOS			
11	¹³ C ₂ -	Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]-	529	509
	8:2FTS	decane sulfonate		

S12

Table S5. The kinetic data for (a) PFOA (the initial con. of PFOA $\approx 2 \text{ mg/L}$); QNC 12:1 amount = 0.32 mg (32 mg/L); (b) PFBA (the initial con. of PFBA $\approx 10 \text{ mg/L}$); QNC 12:1 amount = 3.2 mg (320 mg/L); (c) PFOS (the initial con. of PFOS $\approx 5 \text{ mg/L}$); QNC 12:1 amount = 0.32 mg (32 mg/L); (d) PFBS (the initial con. of PFBS $\approx 10 \text{ mg/L}$); QNC 12:1 amount = 3.2 mg (320 mg/L); (d) PFBS (the initial con. of PFBS $\approx 10 \text{ mg/L}$); QNC 12:1

(a)					
Time	Batch 1 Ce (mg/L)	Batch 2 Ce (mg/L)	Average C _e (mg/L)	Q_e (mg/g)	Error Bar for <i>Q_e</i> (mg/g)
1 min	0.98	0.80	0.89	34.09	3.34
2 min	0.76	0.71	0.74	39.71	0.77
3 min	0.67	0.60	0.63	43.38	1.19
5 min	0.53	0.52	0.52	47.44	0.23
15 min	0.42	0.41	0.42	51.34	0.19
1 h	0.39	0.39	0.39	52.49	0.05
2 h	0.34	0.29	0.32	55.10	0.77
4 h	0.32	0.27	0.30	55.81	0.78
9 h	0.25	0.28	0.27	56.80	0.57
24 h	0.23	0.25	0.24	57.96	0.34

(b)

Time	Batch 1 Ce (mg/L)	Batch 2 Ce (mg/L)	Average <i>C_e</i> (mg/L)	Q_e (mg/g)	Error Bar for <i>Qe</i> (mg/g)
1 min	3.93	3.68	3.81	20.04	0.39
3 min	4.81	3.81	4.31	18.47	1.56
5 min	4.43	3.81	4.12	19.06	0.97
15 min	4.61	4.48	4.54	17.74	0.20
1 h	4.07	3.98	4.02	19.36	0.15
2 h	4.66	4.28	4.47	17.97	0.58
4 h	4.46	4.13	4.30	18.51	0.52
9 h	4.38	4.26	4.32	18.44	0.19
24 h	4.41	4.27	4.34	18.38	0.22

(c)					
Time	Batch 1 Ce (mg/L)	Batch 2 Ce (mg/L)	Average C _e (mg/L)	Q_e (mg/g)	Error Bar for <i>Q_e</i> (mg/g)
1 min	0.085	0.037	0.061	185.59	1.91
3 min	0.036	0.034	0.035	186.41	1.09
5 min	0.052	0.063	0.057	185.71	1.79
15 min	0.028	0.050	0.039	186.29	1.21
1 h	0.015	0.017	0.016	187.00	0.50
2 h	0.008	0.016	0.012	187.11	0.39
6 h	0.006	0.006	0.006	187.31	0.19
24 h	0.012	0.014	0.013	187.10	0.40

(d)

Time	Batch 1 C _e (mg/L)	Batch 2 C _e (mg/L)	Average C _e (mg/L)	$Q_e (\mathrm{mg/g})$	Error Bar for <i>Qe</i> (mg/g)
1 min	3.68	3.53	3.60	20.11	0.23
3 min	3.18	3.02	3.10	21.68	0.25
5 min	3.01	3.08	3.05	21.86	0.10
15 min	2.96	2.92	2.94	22.19	0.07
1 h	3.10	2.74	2.92	22.24	0.57
2 h	3.54	3.54	3.54	20.31	0.00
4 h	3.07	2.83	2.95	22.15	0.38
9 h	2.85	2.96	2.90	22.30	0.18
24 h	3.01	3.30	3.16	21.51	0.46

Table S6. The isotherm data for (a) PFOA (Initial con. of PFOA ≈ 1-50 mg/L); QNC 12:1 amount = 0.32 mg (32 mg/L); equilibrium time = 24 hrs; (b) PFBA (Initial con. of PFBA ≈ 1-100 mg/L; QNC 12:1 amount = 3.2 mg (320 mg/L); equilibrium time 24 hrs; (c) PFOS (Initial con. of PFBS ≈ 1-50 mg/L; QNC 12:1 amount = 0.32 mg (32 mg/L); equilibrium time 24 hrs; PFBS (Initial con. of PFBS ≈ 1-250 mg/L; QNC 12:1 amount = 3.2 mg (320 mg/L); equilibrium time = 24 hrs; PFBS (Initial con. of PFBS ≈ 1-250 mg/L; QNC 12:1 amount = 3.2 mg (320 mg/L); equilibrium time = 24 hrs; PFBS (Initial con. of PFBS ≈ 1-250 mg/L; QNC 12:1 amount = 3.2 mg (320 mg/L);

<u>(a)</u>					
Initial Concentration <i>Co</i> (mg/L)	Batch 1 C _e (mg/L)	Batch 2 <i>Ce</i> (mg/L)	Average <i>C_e</i> (mg/L)	Qe (mg/g)	Error bar for <i>Q_e</i> (mg/g)
1.01	0.24	0.21	0.22	28.74	0.61
2.91	0.35	0.55	0.45	90.28	3.80
5.65	0.54	0.39	0.46	190.27	2.65
8.58	0.37	0.37	0.37	301.23	0.07
10.71	0.99	0.83	0.91	359.38	2.99
16.48	5.81	6.46	6.13	379.54	12.02
21.86	9.64	10.23	9.93	380.21	9.37
22.09	12.50	11.93	12.21	362.20	10.43
27.78	17.07	16.68	16.88	399.75	7.07
44.09	32.42	31.84	32.13	388.83	9.40

(b)

Initial Concentration <i>Co</i> (mg/L)	Batch 1 Ce (mg/L)	Batch 2 Ce (mg/L)	Average Ce (mg/L)	Qe (mg/g)	Error bar for <i>Q_e</i> (mg/g)
6.44	3.52	3.08	3.30	9.79	0.69
12.45	5.62	6.34	5.98	20.22	1.13
16.56	5.94	5.61	5.78	33.70	0.52
22.95	8.25	7.72	7.99	46.77	0.82
34.67	10.94	9.95	10.44	75.72	1.54
60.32	28.95	29.14	29.05	97.74	0.29
73.09	39.68	38.60	39.14	106.11	1.68
89.39	55.21	61.17	58.19	97.49	9.31
118.27	88.96	88.89	88.92	91.71	0.12

(c)					
Initial Concentration C _o (mg/L)	Batch 1 C _e (mg/L)	Batch 2 C _e (mg/L)	Average C _e (mg/L)	Q_e (mg/g)	Error bar for <i>Qe</i> (mg/g)
1.34	0.07	0.25	0.16	37.01	2.75
3.32	0.11	0.15	0.13	99.49	0.55
5.93	0.08	0.09	0.09	182.69	0.05
8.63	0.06	0.07	0.07	267.64	0.06
10.93	0.16	0.36	0.26	333.59	3.18
17.10	0.97	0.98	0.98	503.83	0.16
20.33	3.27	2.76	3.02	551.84	8.23
29.39	11.53	12.19	11.86	564.28	10.64
42.85	26.12	25.96	26.04	551.53	2.69
45.69	29.89	28.40	29.14	542.84	24.34

(d)

Initial Concentration <i>Co</i> (mg/L)	Batch 1 C _e (mg/L)	Batch 2 C _e (mg/L)	Average C _e (mg/L)	Qe (mg/g)	Error bar for <i>Q_e</i> (mg/g)
5.83	1.69	1.54	1.62	13.16	0.24
11.87	3.23	3.04	3.14	27.30	0.30
16.20	4.45	4.18	4.32	37.14	0.42
24.38	6.08	5.65	5.87	57.87	0.67
33.13	7.63	8.36	8.00	78.54	1.13
57.96	13.43	13.68	13.56	138.77	0.39
84.63	28.60	30.23	29.41	172.54	2.54
122.48	52.17	47.88	50.02	226.44	6.70
156.00	86.69	77.34	82.01	231.21	14.61
195.49	109.78	97.46	103.62	287.11	19.24
243.39	157.48	167.84	162.66	258.60	16.59

Table S7. The displacement study for (a) PFBS/PFOS system (the initial con of PFAS ≈ 60 mg/L; QNC 12:1 amount = 0.16 mg (160 mg/L)). PFBS added to the adsorbent, which was equilibrated for 24 hrs. PFOS was added at time = 0 min; (b) PFBA/PFOA system (the initial con of PFAS ≈ 60 mg/L; QNC 12:1 amount = 0.16 mg (160 mg/L); PFBA added to the adsorbent, which was equilibrated for 24 hrs. PFOA was added at time = 0 min.

(a)						
Time	C _e of PFBS (mg/L)	Q _e (mg/g)	Deviation	C _e of PFOS (mg/L)	Q _e (mg/g)	Deviation
0 min	28.21	203.88	1.51	51.65	0	0
1 min	49.20	72.69	6.72	2.62	306.43	2.48
3 min	48.78	75.31	17.12	1.95	310.63	1.97
5 min	50.00	67.71	7.56	1.98	310.47	0.85
15 min	50.46	64.82	1.57	1.26	314.95	0.62
1 h	50.47	64.73	2.02	0.79	317.87	0.82
2 h	49.49	70.84	3.07	0.80	317.81	0.59
4 h	50.58	64.08	4.29	0.92	317.07	0.18
24 h	49.34	71.78	3.36	1.02	316.46	0.25

(b)

Time	C _e of PFBS (mg/L)	Q _e (mg/g)	Deviation	Ce of PFOS (mg/L)	Q _e (mg/g)	Deviation
0 s	44.71	128.07	6.18	71.40	0	0
30 s	54.54	66.65	1.02	30.56	255.27	10.14
60 s	60.53	29.17	0	28.18	270.13	5.11
90 s	53.38	73.90	6.83	24.21	294.91	18.44
10 min	54.63	66.07	0.67	20.94	315.40	5.90
1 h	55.40	61.23	3.87	18.92	328.00	1.85
6 h	57.54	47.87	2.16	18.01	333.71	6.18
24 h	56.44	54.75	1.92	17.97	333.91	14.72

Table S8. The competitive study for (a) PFBS/PFOS system (the initial con of PFAS ≈ 60 mg/L; QNC 12:1 amount = 0.16 mg (160 mg/L)). Single-solute means adsorbent was mixed with PFBS or PFOS individually. Bi-solute means PFBS and PFOS were added together to the adsorbent; (b) PFBA/PFOA system (the initial con of PFAA ≈ 60 mg/L; QNC 12:1 amount = 0.16 mg (160 mg/L)). Single-solute means adsorbent was mixed with PFBA or PFOA individually. Bi-solute means PFBA and PFOA were added together to the adsorbent.

(a)						
Time	Ce of PFBS (mg/L)	$Q_e (\mathrm{mg/g})$	<i>Ce</i> of PFOS (mg/L)	$Q_e (\mathrm{mg/g})$		
		Single-solut	e			
30 s	34.86	130.26	0.83	300.45		
60 s	33.80	136.86	0.83	300.47		
90 s	32.14	147.26	0.75	300.92		
10 min	31.91	148.70	0.51	302.46		
1 h	30.73	156.09	1.94	293.53		
6 h	33.02	141.73	0.26	304.02		
24 h	29.62	163.00	0.16	304.64		
	Bi-solute					
30 s	52.67	18.91	2.73	288.57		
60 s	49.71	37.46	1.67	295.18		
90 s	49.03	41.66	0.98	299.52		
10 min	50.87	30.19	0.71	301.20		
1 h	50.61	31.84	0.38	303.28		
6 h	47.80	49.38	0.19	304.47		
24 h	49.40	39.39	0.26	303.97		

(b)						
Time	Ce of PFBS (mg/L)	$Q_e (\mathrm{mg/g})$	Ce of PFOS (mg/L)	$Q_e (\mathrm{mg/g})$		
	-	Single-solute				
30 s	45.14	125.38	17.99	333.82		
60 s	38.84	164.72	18.48	330.73		
90 s	47.25	112.17	18.55	330.33		
10 min	41.81	146.22	14.74	354.11		
1 h	48.11	106.82	13.42	362.37		
6 h	43.47	135.80	9.30	388.12		
24 h	43.37	136.42	10.20	382.48		
	Bi-solute					
30 s	52.25	80.96	26.15	282.83		
60 s	53.16	75.24	20.94	315.39		
90 s	60.06	32.09	22.15	307.82		
10 min	53.18	75.10	16.72	341.76		
1 h	55.69	59.46	14.72	354.23		
6 h	57.85	45.97	11.45	374.70		
24 h	53.78	71.35	12.40	368.77		

	PFOS	PFOA	PFBS	PFBA
<i>C</i> _o (mg/L)	1.42	2.11	9.88	9
C_e (mg/L)	0.01	0.02	1.56	2.75
Q_e (mg/g)	46.94	69.42	27.71	20.82
<i>Ce</i> 1mM NaCl	0.01	0.29	6.22	6.2
Q_e 1mM NaCl	46.94	39.67	8.67	3.57
C_e 0.1 M NaCl	0.02	1.43	10.22	10.44
$Q_e 0.1 \text{ M NaCl}$	46.61	22.49	0	0

Table S9. Adsorption experiment with 1 mM and 0.1M NaCl ion (PFAS concentrations: 2 mg/L for PFOS/PFOA with 32 mg/L QNC; 10 mg/L for PFBS/PFBA with 320 mg/L QNC

References

- 1. S. Park, J. O. Baker, M. E. Himmel, P. A. Parilla and D. K. Johnson, *Biotechnol Biofuels*, 2010, **3**, 10.
- 2. G. Sebe, F. Ham-Pichavant, E. Ibarboure, A. L. Koffi and P. Tingaut, *Biomacromolecules*, 2012, **13**, 570-578.
- 3. M. Hasani, E. D. Cranston, G. Westman and D. G. Gray, Soft Matter, 2008, 4, 2238-2244.