Supplementary Information

Enhancing Electrocatalytic Activity of Metal-Organic Frameworks in Oxygen Evolution Reaction by Introducing High-Valent Metal Centers[†]

Jie Dong, ‡^a Danil W. Boukhvalov, ‡^{be} Cuncai Lv, ^c Mark G Humphrey, ^d Chi Zhang *^a and Zhipeng Huang *^a

^aChina-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China. Email: chizhang@tongji.edu.cn, zphuang@tongji.edu.cn

^bCollege of Science, Nanjing Forestry University, Nanjing 210037, China

^cKey Laboratory of High-precision Computation and Application of Quantum Field Theory of Hebei Province, Hebei Key Lab of Optic-electronic Information and Materials, The College of Physics Science and Technology, Hebei University, Baoding 071002, China

^dResearch School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia ^eInstitute of Physics and Technology, Ural Federal University, Mira Str. 19, 620002 Yekaterinburg, Russia ‡ These authors contributed equally The specific steps of DFT modeling are as follows:

I: * + H₂O \rightarrow *OH + H⁺ + e⁻ II: *HO \rightarrow *O + H⁺+ e⁻ III: *O + H₂O \rightarrow *OOH + H⁺ + e⁻ IV: *OOH \rightarrow * + O₂ + H⁺ + e⁻

Content

Fig. S1 Optical images of (a) Ni-HHTP-MH and (b) Ni-HHTP-CH.

Fig. S2 SEM images of Ni-HHTP-CH.

Fig. S3 The pore size distribution curves of the Ni-HHTP-MH.

Fig. S4 (a) The N_2 sorption/desorption isotherms and (b) pore size distribution curves of the Ni-HHTP-CH.

Fig. S5 XPS survey spectra of the obtained Ni-HHTP-CH and Ni-HHTP-MH.

Fig. S6 High-resolution O 1s XPS spectra of the Ni-HHTP-CH and Ni-HHTP-MH.

Fig. S7 Magnetic susceptibility of Ni-HHTP-MH and Ni-HHTP-CH.

Fig. S8 XRD patterns of Ni-HHTP-CH synthesized at different heating temperatures.

Fig. S9 SEM images of Ni-HHTP-CH synthesized at different heating temperatures: (a) 75 °C and (b) 105 °C.

Fig. S10 XRD patterns of Ni-HHTP-CH synthesized at different heating times.

Fig. S11 SEM images of Ni-HHTP-CH synthesized at different heating times: (a) 6 h and (b) 24 h.

Fig. S12 LSV curves of Ni-HHTP-CH synthesized at different heating temperatures.

Fig. S13 LSV curves of Ni-HHTP-CH synthesized at different heating times.

Fig. S14 XRD patterns of Ni-HHTP-MH synthesized at different microwave heating temperatures.

Fig. S15 SEM images of Ni-HHTP-MH synthesized at different microwave heating temperatures: (a) 65 °C, (b) 70 °C, (c) 85 °C and (a) 105 °C.

Fig. S16 XRD patterns of Ni-HHTP-MH synthesized at different microwave heating times.

Fig. S17 SEM images of Ni-HHTP-MH synthesized at different microwave heating times: (a) 3 h and (b) 5 h.

Fig. S18 LSV curves of Ni-HHTP-MH synthesized at different microwave heating temperatures.

Fig. S19 LSV curves of Ni-HHTP-MH synthesized at different microwave heating times.

Fig. S20 The equivalent circuit model for electrochemical impedance tests.

Fig. S21 Cyclic voltammogram of Ni-HHTP-CH in 1.0 M KOH solutions at various scan rates within a potential range of 1.15-1.25 V.

Fig. S22 Cyclic voltammogram of Ni-HHTP-MH in 1.0 M KOH solutions at various scan rates within a potential range of 1.15-1.25 V.

Fig. S23 Diagram of theoretical and detected O_2 volume at a constant current density of 20 mA cm⁻² in 1.0 M KOH.

Fig. S24 XRD patterns of Ni-HHTP-MH before and after the OER durability test.

Fig. S25 SEM images of Ni-HHTP-MH before and after the OER durability test.

Fig. S26 High-resolution Ni 2p XPS spectra of (a) the Ni-HHTP-CH and (b) the Ni-HHTP-MH before and after the OER test.

Fig. S27 High-resolution O 1s XPS spectra of (a) the Ni-HHTP-CH and (b) the Ni-HHTP-MH before and after the OER test.

Fig. S28 Overall water splitting performances of Ni-HHTP-MH||Pt/C in 1 M KOH.

Fig. S29 Optimized geometrical structures of (a) Ni-HHTP-CH and (b) Ni-HHTP-MH.

Fig. S30 LSV curves of (a) the Ni-HHTP-CH and (b) the Ni-HHTP-MH; (c) Cyclic voltammetry curves of Ni-HHTP-MH and Ni-HHTP-CH.

Fig. S31 Cyclic voltammetry for Ni(OH)₂ at the potential range of 0.6–1.8 V.

Fig. S32 XRD patterns of Co-HHTP-CH and Fe-HHTP-CH.

Fig. S33 SEM images of Co-HHTP-MH and Fe-HHTP-MH.

Fig. S34 SEM images of Co-HHTP-CH and Fe-HHTP-CH.

Fig. S35 High-resolution Fe 2p XPS spectra of Fe-HHTP-MH and Fe-HHTP-CH.

Fig. S36 High-resolution Co 2p XPS spectra of Co-HHTP-MH and Co-HHTP-CH.

Fig. S37 LSV curves of Co-HHTP-MH, Fe-HHTP-MH, Co-HHTP-CH and Fe-HHTP-CH.

Fig. S38 η_{10} and η_{100} of Co-HHTP-MH, Fe-HHTP-MH, Co-HHTP-CH and Fe-HHTP-CH.

Table S1 The EIS results of Ni-HHTP-MH and Ni-HHTP-CH in 1.0 M KOH solution.

Table S2 TOF was calculated from the ICP results.

Table S3 Comparisons of the recently reported OER electrocatalysts based on metalorganic frameworks in alkaline solution.

Table S4 Comparisons of OER performance of our catalysts to the most active catalysts reported recently in alkaline solution.

Fig. S1 Optical images of Ni-HHTP-CH and Ni-HHTP-MH.

Fig. S2 SEM images of Ni-HHTP-CH.

Fig. S3 The pore size distribution curves of the Ni-HHTP-MH.

Fig. S4 (a) The N_2 sorption/desorption isotherms and (b) pore size distribution curves of the Ni-HHTP-CH.

Fig. S5 XPS survey spectra of the Ni-HHTP-CH and Ni-HHTP-MH.

Fig. S6 High-resolution O 1s XPS spectra of the Ni-HHTP-CH and Ni-HHTP-MH.

Fig. S7 Magnetic susceptibility of Ni-HHTP-MH and Ni-HHTP-CH.

The total effective magnetic moment (μ_{eff}) can be obtained by fitting the χ^{1} -*T* curve according to Langevin theory. The number of unpaired *d* electrons is further calculated using χ^{1} -*T* and is denoted as *n*. The calculated μ_{eff} values for Ni-HHTP-MH and Ni-HHTP-CH are 2.83 μ_{B} and 3.57 μ_{B} , respectively, and Ni ions and radicals contribute both.¹ The magnetic moments (μ) of Ni ions and radicals are abbreviated as μ_{Ni} and μ_{rad} , respectively, by the equation: $\mu_{eff}^{2}=\mu_{Ni}^{2}+\mu_{rad}^{2}$, the μ_{Ni} for Ni-HHTP-MH and Ni-HHTP-CH are derived as 1.77 μ_{B} and 2.81 μ_{B} , respectively. Because each building unit of Ni-HHTP contributes 1.33 radicals², μ_{rad} for Ni-HHTP can be calculated as 2.10 μ_{B} . According to the formula: $\mu=\sqrt{n(n+2)}$, the calculated *n* for Ni-HHTP-MH and Ni-HHTP-CH are 1.03 and 2.00, respectively.

Fig. S8 XRD patterns of Ni-HHTP-CH synthesized at different heating temperatures.

Fig. S9 SEM images of Ni-HHTP-CH synthesized at different heating temperatures: (a) 75 $^{\circ}$ C and (b) 105 $^{\circ}$ C.

Fig. S10 XRD patterns of Ni-HHTP-CH synthesized at different heating times.

Fig. S11 SEM images of Ni-HHTP-CH synthesized at different heating times: (a) 6 h and (b) 24 h.

Fig. S12 LSV curves of Ni-HHTP-CH synthesized at different heating temperatures.

Fig. S13 LSV curves of Ni-HHTP-CH synthesized at different heating times.

Fig. S14 XRD patterns of Ni-HHTP-MH synthesized at different microwave heating temperatures.

Fig. S15 SEM images of Ni-HHTP-MH synthesized at different microwave heating temperatures: (a) 65 °C, (b) 70 °C, (c) 85 °C and (a) 105 °C.

Fig. S16 XRD patterns of Ni-HHTP-MH synthesized at different microwave heating times.

Fig. S17 SEM images of Ni-HHTP-MH synthesized at different microwave heating times: (a) 3 h and (b) 5 h.

Fig. S18 LSV curves of Ni-HHTP-MH synthesized at different microwave heating temperatures.

Fig. S19 LSV curves of Ni-HHTP-MH synthesized at different microwave heating times.

Fig. S20 The equivalent circuit model for electrochemical impedance tests. R_s , R_1 , and R_{ct} represent the resistances of the electrolyte, electrode porosity, and charge transfer, respectively. The constant phase angle element (CPE) represents the double-layer capacitance of a solid electrode in a real-world situation.

Fig. S21 Cyclic voltammogram of Ni-HHTP-CH in 1.0 M KOH solutions at various scan rates within a potential range of 1.15-1.25 V.

Fig. S22 Cyclic voltammogram of Ni-HHTP-MH in 1.0 M KOH solutions at various scan rates within a potential range of 1.15-1.25 V.

Fig. S23 Diagram of theoretical and detected O_2 volume at a constant current density of 20 mA cm⁻² in 1.0 M KOH.

Fig. S24 XRD patterns of Ni-HHTP-MH before and after the OER durability test.

Fig. S25 SEM images of Ni-HHTP-MH before and after the OER durability test.

Fig. S26 High-resolution Ni 2p XPS spectra of (a) the Ni-HHTP-CH and (b) the Ni-HHTP-MH before and after the OER test.

Fig. S27 High-resolution O 1s XPS spectra of (a) the Ni-HHTP-CH and (b) the Ni-HHTP-MH before and after the OER.

Fig. S28 Overall water splitting performances of Ni-HHTP-MH||Pt/C in 1 M KOH.

Fig. S29 Optimized geometrical structures of (a) Ni-HHTP-CH and (b) Ni-HHTP-MH. The blue, red, white and grey colors refer to Ni, O, H and C atoms, respectively.

Fig. S30 LSV curves of (a) the Ni-HHTP-CH and (b) the Ni-HHTP-MH; (c) Cyclic voltammetry curves of Ni-HHTP-MH and Ni-HHTP-CH.

Fig. S31 Cyclic voltammetry for $Ni(OH)_2$ at the potential range of 0.6–1.8 V³.

Fig. S32 XRD patterns of Co-HHTP-CH and Fe-HHTP-CH.

Fig. S33 SEM images of Co-HHTP-MH and Fe-HHTP-MH.

Fig. S34 SEM images of Co-HHTP-CH and Fe-HHTP-CH.

Fig. S35 High-resolution Fe 2p XPS spectra of Fe-HHTP-MH and Fe-HHTP-CH.

Fig. S36 High-resolution Co 2p XPS spectra of Co-HHTP-MH and Co-HHTP-CH.

Fig. S37 LSV curves of Co-HHTP-MH, Fe-HHTP-MH, Co-HHTP-CH and Fe-HHTP-CH.

Fig. S38 η_{10} and η_{100} of Co-HHTP-MH, Fe-HHTP-MH, Co-HHTP-CH and Fe-HHTP-CH.

Sample	R _s (Ω)	R1 (Ω)	R _{ct} (Ω)	CPE (mF)	CPE1 (mF)
Ni-HHTP-MH	1.313	4.58	17.0	15.75	2.243
Ni-HHTP-CH	1.564	1.67	33.5	8.64	1.781

Table S1 The EIS results of Ni-HHTP-MH and Ni-HHTP-CH in 1.0 M KOH solution.

Samplo	n (10 ⁻⁶ mmol)	TOF calculated from n based on ICP results (s ⁻¹)				
Sample	based on ICP results					
Ni-HHTP-MH	4.56	0.062				
Ni-HHTP-CH	4.40	0.002				

Table S2 TOF was calculated from the ICP results.

Catalyst	Scan rate (mV s ⁻¹)	η ₁₀ (mV)	η ₁₀₀ (mV)	Tafel slop (mV dec ⁻¹)	Substrat e	Ref.
Ni-HHTP-MH	5	136	286	80.3	CFP	This work
NiFe-NFF	5	227	253	38.9	NFF	4
Pt-NC/Ni-MOF	5	292	-	-	GCE	5
Ni–Fe–MOF	5	221	320	56.0	GCE	6
CoBDC-Fc-NF	2	178	241	51.0	NF	7
MCCF/NiMn- MOFs	5	280	-	86.0	СР	8
CoNi-MOFNA	5	215	250	51.6	CNF	9
FeCo-MOF-EH	2	301	-	42.0	CFP	10
M-PCBN/CC	5	232	270	32.0	CC	11
Ni _{0.5} Co _{0.5} - MOF-74	5	198	-	49.0	GCE	12
CoCu-MOF NBs.	5	271	334	63.5	СР	13
2D MOF- Fe/Co(1:2)	10	238	330	52.0	GCE	14
Co-LDH@ZIF- 67	5	187	310	59.0	СС	15
NiFc-MOF/NF	10	195	241	48.5	NF	16
NiFe-MOF/G	5	258	328	49.0	GCE	17
NiFe-MOF	5	215	263	49.1	CFC	18
Fe–Co–Ni MOF	5	254	406	51.3	NF	19
Ni-BDC-1R	0.5	225	350	89.0	NF	20
MIL-53(Fe)- 2OH	1	215	270	45.4	NF	21
Ni₂Fe₁ Sq-zbr- MOF	5	230	270	37.7	СР	22
NiYCe-MOF/NF	5	245	264	65.0	NF	23

Table S3 Comparisons of the recently reported OER electrocatalysts based on metalorganic frameworks in alkaline solution.

The η_{10} and η_{100} were overpotential at current density of 10 and 100 mA cm⁻²; CFP: carbon fiber paper; NFF: NiFe alloy foam; GCE: glassy carbon electrode; NF: nickel foam; CP: carbon paper; CNF: Co₉Ni₁ foam; CC: carbon cloth; CFC: carbon fiber cloth.

Catalyst	Scan rate	η_{10}	η_{100}	Tafel slop	Substrat	Def	
	(mV s ⁻¹)	(mV)	(mV)	(mV dec ⁻¹)	е	Ret.	
Ni-HHTP-MH	5	136	286	80.3	CFP	This work	
NiFe- P _{zn} @PNTA	5	172	~290	50.0	ΡΝΤΑ	24	
NiOOH/(LDH/α -FeOOH)	5	195	250	35.0	NF	25	
TMB@NiNC	1	208	230	41.4	NF	26	
FeCoNiS _x	1	202	255	47.0	NF	27	
CoP/Fe-Co ₉ S ₈	5	156	~250	41.7	NF	28	
Ce-NiFe	5	195	~232	22.8	NFF	29	
Fe@MoS ₂ -C	5	194	~325	63.0	NF	30	
Ni–Gr–CNTs– Sn₄P₃	5	169@ 20	375	88.0	NF	31	
Au/ULDH-NiFe	5	189	-	35.0	GCE	32	
W-NiS _{0.5} Se _{0.5}	5	171	239	41.0	NF	33	
NiFeV nanofiber	10	181	269	47.0	СС	34	
Ru-NiCo ₂ S _{4-x}	2	190@ 50	~330	61.3	NF	35	
lr/CoNiB	1	178	242	35.1	NF	36	
Ir _{sA} -Ni ₂ P	5	149	~252	90.1	GCE	37	

Table S4 Comparisons of OER performance of our catalysts to the most active catalysts reported recently in alkaline solution.

The η_{10} and η_{100} were overpotential at current density of 10 and 100 mA cm⁻²; CFP: carbon fiber paper; PNTA: porous nickel tube arrays; NF: nickel foam; NFF: NiFe alloy foam; GCE: glassy carbon electrode; CC: carbon cloth.

Reference

- 1. L. Yang, X. He and M. Dinca, J. Am. Chem. Soc., 2019, **141**, 10475-10480.
- 2. Q. Lv, Z. Zhu, Y. Ni, J. Geng and F. Li, *Angew. Chem. Int. Ed.*, 2022, **61**, e202114293.
- 3. J. Q. Yan, L. Q. Kong, Y. J. Ji, J. White, Y. Y. Li, J. Zhang, P. F. An, S. Z. Liu, S. T. Lee and T. Y. Ma, *Nature Commun.*, 2019, **10**, 2149.
- 4. C. Cao, D.-D. Ma, Q. Xu, X.-T. Wu and Q.-L. Zhu, *Adv. Funct. Mater.*, 2019, **29**, 1807418.
- 5. C. X. Guo, Y. Jiao, Y. Zheng, J. Luo, K. Davey and S. Z. Qiao, *Chem*, 2019, **5**, 2429-2441.
- 6. F.-L. Li, P. Wang, X. Huang, D. J. Young, H.-F. Wang, P. Braunstein and J.-P. Lang, *Angew. Chem. Int. Ed.*, 2019, **58**, 7051-7056.
- 7. Z. Xue, K. Liu, Q. Liu, Y. Li, M. Li, C.-Y. Su, N. Ogiwara, H. Kobayashi, H. Kitagawa, M. Liu and G. Li, *Nat. Commun.*, 2019, **10**, 5048.
- 8. W. Cheng, X. F. Lu, D. Luan and X. W. Lou, *Angew. Chem. Int. Ed.*, 2020, **59**, 18234-18239.
- 9. L. Huang, G. Gao, H. Zhang, J. X. Chen, Y. X. Fang and S. J. Dong, *Nano Energy*, 2020, **68**, 104296.
- 10. J. Tian, F. Jiang, D. Yuan, L. Zhang, Q. Chen and M. Hong, *Angew. Chem. Int. Ed.*, 2020, **59**, 13101-13108.
- 11. W. Zhang, Y. Wang, H. Zheng, R. Li, Y. Tang, B. Li, C. Zhu, L. You, M.-R. Gao, Z. Liu, S.-H. Yu and K. Zhou, *ACS Nano*, 2020, **14**, 1971-1981.
- 12. S. Zhao, C. Tan, C.-T. He, P. An, F. Xie, S. Jiang, Y. Zhu, K.-H. Wu, B. Zhang, H. Li, J. Zhang, Y. Chen, S. Liu, J. Dong and Z. Tang, *Nat. Energy*, 2020, **5**, 881-890.
- 13. W. Cheng, Z.-P. Wu, D. Luan, S.-Q. Zang and X. W. Lou, *Angew. Chem. Int. Ed.*, 2021, **60**, 26397-26402.
- 14. K. Ge, S. Sun, Y. Zhao, K. Yang, S. Wang, Z. Zhang, J. Cao, Y. Yang, Y. Zhang, M. Pan and L. Zhu, *Angew. Chem. Int. Ed.*, 2021, **60**, 12097-12102.
- 15. Z. Li, X. Zhang, Y. Kang, C. C. Yu, Y. Wen, M. Hu, D. Meng, W. Song and Y. Yang, Adv. Sci., 2021, 8.
- 16. J. Liang, X. Gao, B. Guo, Y. Ding, J. Yan, Z. Guo, E. C. M. Tse and J. Liu, *Angew. Chem. Int. Ed.*, 2021, **60**, 12770-12774.
- 17. Y. Wang, B. Liu, X. Shen, H. Arandiyan, T. Zhao, Y. Li, M. Garbrecht, Z. Su, L. Han, A. Tricoli and C. Zhao, *Adv. Energy Mater.*, 2021, **11**, 2003759.
- 18. J. Zhou, Z. Han, X. Wang, H. Gai, Z. Chen, T. Guo, X. Hou, L. Xu, X. Hu, M. Huang, S. V. Levchenko and H. Jiang, *Adv. Funct. Mater.*, 2021, **31**, 2102066.
- 19. F. S. Farahani, M. S. Rahmanifar, A. Noori, M. F. El-Kady, N. Hassani, M. Neek-Amal, R. B. Kaner and M. F. Mousavi, *J. Am. Chem. Soc.*, 2022, **144**, 3411-3428.
- 20. L. Zhang, J. Wang, K. Jiang, Z. Xiao, Y. Gao, S. Lin and B. Chen, *Angew. Chem. Int. Ed.*, 2022, **61**, e202214794.
- 21. C. Zhang, Q. Qi, Y. Mei, J. Hu, M. Sun, Y. Zhang, B. Huang, L. Zhang and S. Yang, *Adv. Mater.*, 2022, e2208904.
- 22. S. Kandambeth, V. S. Kale, D. Fan, J. A. Bau, P. M. Bhatt, S. Zhou, A. Shkurenko, M. Rueping, G. Maurin, O. Shekhah and M. Eddaoudi, *Adv. Energy Mater.*, 2022, **13**, 2202964.
- 23. F. Li, M. Jiang, C. Lai, H. Xu, K. Zhang and Z. Jin, *Nano Lett.*, 2022, **22**, 7238-7245.
- 24. Y. Zhou, N. Jin, Y. Ma, Y. Cui, L. Wang, Y. Kwon, W. K. Lee, W. Zhang, H. Ge and J. Zhang, *Adv. Mater.*, 2022, e2209500.
- 25. M. Cai, Q. Zhu, X. Wang, Z. Shao, L. Yao, H. Zeng, X. Wu, J. Chen, K. Huang and S. Feng, *Adv. Mater.*, 2022, e2209338.
- 26. M. Moloudi, A. Noori, M. S. Rahmanifar, Y. Shabangoli, M. F. El-Kady, N. B. Mohamed, R. B. Kaner and M. F. Mousavi, *Adv. Energy Mater.*, 2022, **13**, 2203002.
- 27. A. Wang, X. Zhang, S. Gao, C. Zhao, S. Kuang, S. Lu, J. Niu, G. Wang, W. Li, D. Chen, H. Zhang, X. Zhou, S. Zhang, B. Zhang and W. Wang, *Adv. Mater.*, 2022, **34**, e2204247.
- 28. X. Chen, Y. Cheng, Y. Wen, Y. Wang, X. Yan, J. Wei, S. He and J. Zhou, *Adv. Sci.*, 2022, **9**, e2204742.
- 29. J. Liu, Y. Liu, X. Mu, H. Jang, Z. Lei, S. Jiao, P. Yan, M. G. Kim and R. Cao, *Adv. Funct. Mater.*, 2022, **32**, 2204086.
- 30. F. Gong, M. Liu, L. Gong, S. Ye, Q. Jiang, G. Zeng, X. Zhang, Z. Peng, Y. Zhang, S. Fang and J. Liu, *Adv. Funct. Mater.*, 2022, **32**, 2202141.

- 31. S. Riyajuddin, M. Pahuja, P. K. Sachdeva, K. Azmi, S. Kumar, M. Afshan, F. Ali, J. Sultana, T. Maruyama, C. Bera and K. Ghosh, *ACS Nano*, 2022, **16**, 4861-4875.
- 32. S. Kitano, T. G. Noguchi, M. Nishihara, K. Kamitani, T. Sugiyama, S. Yoshioka, T. Miwa, K. Yoshizawa, A. Staykov and M. Yamauchi, *Adv. Mater.*, 2022, **34**, e2110552.
- 33. Y. Wang, X. Li, M. Zhang, J. Zhang, Z. Chen, X. Zheng, Z. Tian, N. Zhao, X. Han, K. Zaghib, Y. Wang, Y. Deng and W. Hu, *Adv. Mater.*, 2022, **34**, e2107053.
- 34. B. Zhang, Z. Wu, W. Shao, Y. Gao, W. Wang, T. Ma, L. Ma, S. Li, C. Cheng and C. Zhao, *Angew. Chem. Int. Ed.*, 2022, **61**, e202115331.
- 35. H. Su, S. Song, Y. Gao, N. Li, Y. Fu, L. Ge, W. Song, J. Liu and T. Ma, *Adv. Funct. Mater.*, 2021, **32**, 2109731.
- 36. C. Wang, P. Zhai, M. Xia, Y. Wu, B. Zhang, Z. Li, L. Ran, J. Gao, X. Zhang, Z. Fan, L. Sun and J. Hou, *Angew. Chem. Int. Ed.*, 2021, **60**, 27126-27134.
- Q. Wang, Z. Zhang, C. Cai, M. Wang, Z. L. Zhao, M. Li, X. Huang, S. Han, H. Zhou, Z. Feng, L. Li, J. Li, H. Xu, J. S. Francisco and M. Gu, *J. Am. Chem. Soc.*, 2021, **143**, 13605-13615.