Fundamental insight into enhanced activity of Pd/CeO₂ thin films in hydrogen oxidation reaction in alkaline media Supporting information

Authors: Mathilde Luneau^{1, 2*}, Linnéa Strandberg², Gerard Montserrat-Sisó², Victor Shokhen², Roopathy Mohan², Henrik Grönbeck², Björn Wickman²

1. Department of Chemistry and Chemical Engineering and Competence Centre for Catalysis, Chalmers University of Technology, Gothenburg, SE 41296 (Sweden)

2. Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, Gothenburg, SE 41296 (Sweden)

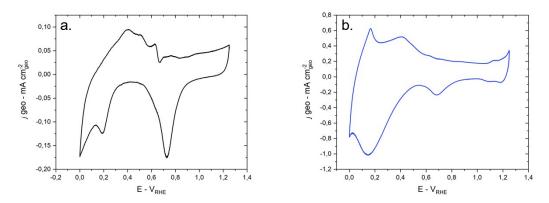


Figure S1: CV at 50mV.s⁻¹ during conditioning on a. pure Pd quartz crystal b. Pd/CeO₂ quartz crystal

Table S1: ECSA measured on glassy carbon electrodes and quartz crystals before and after
reaction

Methods			GCE		QCM	
			Pd	Pd/CeO ₂	Pd	Pd/CeO ₂
Pd oxides	ECSA before HOR (cm ² _{Pd})		0.40 ± 0.01	0.41 ± 0.01	0.35 ± 0.01	0.35 ± 0.1
reduction	ECSA after HOR (cm ² _{Pd})		0.36 ± 0.01	0.37 ± 0.01	/	/
	ECSA after HOR (cm ² _{Pd})	run 1	/	/	0.39 ± 0.01	0.34 ± 0.01
CO stripping		run 2	/	/	0.34 ± 0.01	0.34 ± 0.01
		run 3	/	/	0.36 ± 0.01	0.35 ± 0.01

	Specific activity at 0.1 V _{RHE} j – mA cm ⁻² Pd	Reference
Pd thin film	0.003	This work
Pd/CeO ₂ thin film	0.122	This work
Pd black	0.002	Yarmiayev et al. *
7% ceria-doped Pd black	0.051	Yarmiayev et al. *
11% ceria-doped Pd black	0.14	Yarmiayev et al. *

Table S2: Comparison of specific activity with other published results

* Yarmiayev et al 2019 J. Electrochem. Soc. 166 F3234, measurements performed at 900 rpm

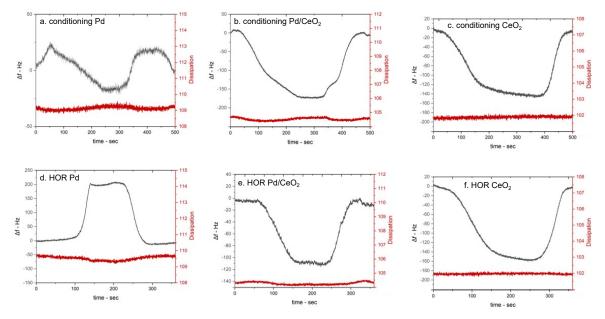


Figure S2: Dissipation measurements during conditioning and HOR on Pd, Pd/CeO₂ and CeO₂ only.

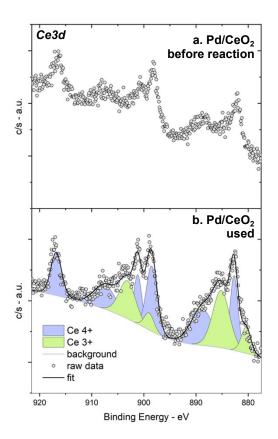


Figure S3: XPS spectra of the Ce3d region measured before (a) and after (b) reaction showing characteristic peaks of Ce^{4+} species in three doublets, as well as of Ce^{3+} species in two doublets.

_		Binding energy	Before HOR	After HOR
	$\begin{tabular}{c c c c c c c c c c c c c c c c c c c $		55 %	38%
			22%	43%
	Pd-O-Ce	$337.5 \pm 0.1 \text{ eV}$	23%	19%
-		ratio* 3d _{5/2} +Ce3d)	0.89 ± 0.01	0.61 ± 0.01

Table S3: Surface composition of Pd/CeO₂ as measured by XPS before and after HOR | Binding energy | Before HOR | After HOR

* The total areas were used and were not corrected with relative sensitivity factors.

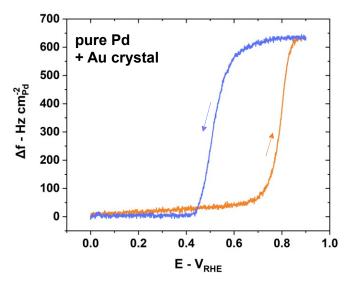


Figure S4: E-QCM measurements performed during HOR on pure Pd thin films deposited on a Au layer (similar to Pd/CeO_2 and CeO_2 crystals)

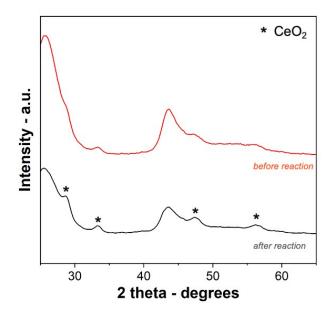


Figure S5: WAXS measurements of Pd/CeO_2 before and after reaction confirm the presence of a CeO_2 phase (ref for CeO_2 : Swatsitang et al., Physica B, 2016, 485, 14-20).

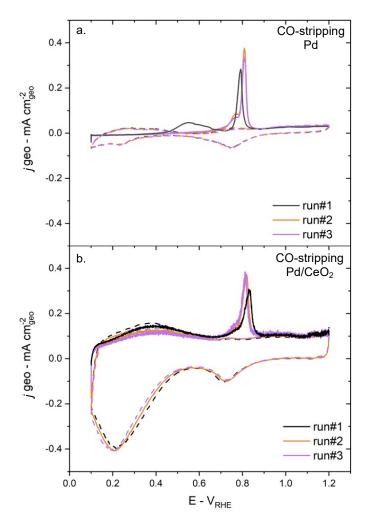


Figure S6: CO-stripping performed on a. Pd and b. Pd/CeO₂ directly after HOR reaction

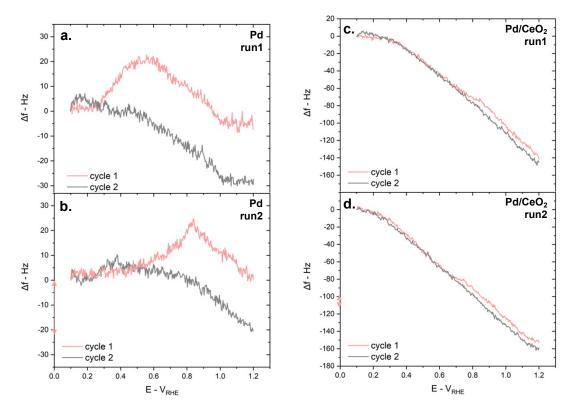


Figure S7: E-QCM measurements during CO-stripping on a. b. Pd and c. d. Pd/CeO₂