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Supplementary Notes
Note S1. The Introduction of ML algorithms

Scikit-Learn was used to obtain the KRR, MLP, RF, and GBDT algorithms 

which were chosen to build prediction models for comparing. Kernel ridge 

regression (KRR) is a combination of Ridge regression and classification with 

the kernel trick, thus learning a linear function in the space induced by the 

respective kernel and the data1. Multi-layer Perceptron (MLP) is a supervised 

learning algorithm that learns a function  by training on a dataset, 𝑓( ∙ ):𝑅𝑚→𝑅𝑜

where  is the number of dimensions for input and  is the number of dimensions 𝑚 𝑜

for output2. RF3 and GBDT4 are two sub-models of Decision Tree (DT) models5. 

To address the problem of overfitting that limits the application of DT, RF 

utilizes randomness injection into the tree building while GBDT tries to correct 

the mistakes of the previous tree continuously.
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Note S2. The introduction of constructing bimetallic alloy surfaces

For a surface of copper alloy, we only consider the 18 nearest neighbors of active 

sites as the ML models are implemented based on these 18 atoms. To build bimetallic 

alloy surfaces, for every atom of these 18 atoms, we set it to Cu or X, where X = Fe, 

Co, Ni, Zn, Ru, Rh, Pd, Os, Ir, Pt. For example, if X = Fe, these 18 atoms can be Cu or 

Fe, and in total, 218 (262144) CuFe bimetallic alloy surfaces are constructed. Hence, for 

the 10 metals, 2621440 bimetallic alloy surfaces are generated. Though there may exist 

the same surface due to the symmetry, we consider all the possibility as we aim to 

understand the optimal alloy element.
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Supplementary Tables

Table S1 The specific hyperparameters of the four ML models.

KRR MLP RF GBDT

alpha 0.6 0.01

hidden layer 
sizes (150,150)

learning rate 0.002 0.032

estimators 280 153

max depth 25 8

max features 126 126
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Table S2. The all possible NORR pathways.

Name Pathway

Distal-O

* + NO + H+ + e− → *NOH

*NOH + H+ + e− → *N + H2O

*N + H+ + e−→ *NH

*NH + H+ + e−→ *NH2

*NH2 + H+ + e−→ * + NH3

Distal-N

* + NO + H+ + e− → *HNO

*HNO + H+ + e− → * H2NO

* H2NO + H+ + e−→ *O + NH3

*O + H+ + e−→ *OH

*OH + H+ + e−→ * + H2O

Alternating-O

* + NO + H+ + e− → *NOH

*NOH + H+ + e− → *HNOH

* HNOH + H+ + e−→ * NH + H2O

*NH + H+ + e−→ *NH2

*NH2 + H+ + e−→ * + NH3

Alternating-N

* + NO + H+ + e− → *HNO

*HNO + H+ + e− → *HNOH

* HNOH + H+ + e−→ *H2NOH

* H2NOH + H+ + e−→ * NH2 + H2O

*NH2 + H+ + e−→ * + NH3
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Table S3. Gibbs free binding energies of the NORR intermediates on different 

metal flat surfaces.

Eads(N) *NOH *N *NH *NH2

Cu 1.93 0.32 -0.95 -1.96 -1.96 

Cu3Fe 0.65 -0.48 -2.24 -2.69 -2.92

Cu2Fe2 0.26 -0.88 -2.63 -3.03 -2.70

Cu3Co 0.76 -0.40 -2.11 -2.53 -2.72

Cu2Co2 0.33 -0.82 -2.54 -2.94 -2.59

Cu3Ni 1.16 -0.30 -1.71 -2.46 -2.70

Cu2Ni2 0.37 -0.85 -2.49 -2.91 -2.97

Cu3Zn 1.70 0.06 -1.18 -2.32 -2.52

Cu2Zn2 1.36 -0.29 -1.52 -2.71 -2.60

Cu3Ru 0.30 -0.49 -2.58 -2.55 -2.79

Cu2Ru2 -0.02 -1.01 -2.90 -3.14 -3.02

Cu3Rh 1.17 -0.07 -1.70 -2.05 -2.54

Cu2Rh2 0.13 -0.79 -2.74 -2.85 -2.88

Cu3Pd 1.85 0.16 -1.03 -1.96 -2.43

Cu2Pd2 1.55 0.23 -1.32 -1.70 -2.20

CuOs3 0.01 -0.76 -2.88 -2.81 -2.99

Cu2Os2 -0.12 -1.02 -2.99 -3.19 -3.02

CuIr3 0.78 -0.38 -2.10 -2.33 -2.76

Cu2Ir2 0.06 -0.74 -2.81 -2.87 -2.87

CuPt3 1.49 0.07 -1.38 -2.06 -2.45

Cu2Pt2 1.01 -0.11 -1.86 -2.08 -2.52
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Table S4. The optimized intermediates for Cu, Cu@Cu3Ni, and Cu2Ni2@Cu3Ni.

Cu Cu@Cu3Ni Cu2Ni2@Cu3Ni

*NOH

*N

*NH

*NH2

*HNO

* H2NO

*H2NOH

*HNOH

*O

*OH
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Table S5. Comparison of the competitive adsorption energies of NO and H2O.

NO H2O

Cu@Cu3Ni -0.18 -0.03

Cu2Ni2@Cu3Ni -0.38 -0.04
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Supplementary Figures

Figure S1. The geometric structures of Cu, Cu3X, and Cu2X2 from the side view. The 

metal X and Cu atoms are marked by cyan and purple spheres, respectively.
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Figure S2. Side (a) and top (b) view of the optimized model of electrochemical 

solid−liquid interface on Cu@Cu3Ni. The light red, red, white and blue atom represent 

Cu, O, H and Ni. The dash line represents H-bond network.
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Figure S3. The geometric structures of the copper based alloys from the top view. The 

metal X and Cu atoms are marked by cyan and purple spheres, respectively.
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Figure S4. The Distal-O reaction pathway for the 15 select alloys.
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Figure S5. The all possible reaction pathways for Cu, Cu3Co, Cu3Ni, Cu3Co@Cu2Co2, 

Cu@Cu3Ni, Cu2Ni2@Cu3Ni, and Cu2Zn2@Cu3Zn.
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Figure S6. Kinetic barriers of the NORR for Cu3Co@Cu2Co2 (a) and Cu2Zn2@Cu3Zn 

(b) along the Distal-O pathway. 
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Figure S7. The reaction pathways of Cu@Cu3Ni, Cu2Ni2@Cu3Ni for NH3 produce, N2 

produce, and N2O produce. The protonation of *NO and *NH2 do not change 

spontaneous processes of thermodynamics.
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Figure S8. The heat map of the features by Pearson correlation coefficient analysis, 

including atomic number (N), atomic radius (r), dipole polarizability (D), electron 

affinity (EA), Pauling electronegativity (En), ionization potential (I), and the number 

of d electron (Nd), valence electron number (Nv), and van der Waals radius (rv).
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Figure S9. The RMSE and the R2 score of 4 ML models (MLP, KRR, RF, and GBDT) 

on the train set.

Figure S10. The violet plot of error distributions for each metal.
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Figure S11. The feature importance analysis for the local environment of Zone 1, Zone 

2, Zone 3, and Zone 4.

Figure S12. The feature importance analysis for the local environment of Atom 1, 

Atom 2, Atom 3, Atom 4, Atom 5, and Atom 6.
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Figure S13.The ratio (χ) of the predicted Eads(*N) ranging from 0.7 eV to 1.3 eV for 

every Ni ratio . We analyze the ratio of Ni ( ) in all CuNi alloy surfaces, and then for  𝜅 𝜅

each ratio , we count the number of all surfaces ( ) and the number of the surface 𝜅 𝑁𝜅

with the Eads(*N) ranging from 0.7 eV to 1.3 eV (N). By these data, we calculate the 

ratio ( ) of the predicted Eads(*N) ranging from 0.7 eV to 1.3 eV in all possible surfaces 𝜒

for every Ni ratio , namely: .  𝜅
𝜒 =

𝑁 

𝑁𝜅
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