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Figure S1. SEM surface views of Ni-MOF with various concentration of Zn-dopant added to the
MOF precursor during synthesis. (a) 0, (b) 0.25, (c) 0.5, (d) 0.75 and (e) 1.0 millimoles.
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Figure S2. (a) Linear sweep polarization curves recorded at 90% iR loss compensation of the Ni-

MOF/NF electrode doped with various concentrations of Zn-dopant (as described in figure S1) in
0.33 M urea containing 1.0 M KOH aqueous electrolyte. (b) Linear sweep polarization curves of
the Zn@Ni-MOF/NF and Ni-MOF/NF electrodes recorded with and without iR loss compensation.
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Figure S3. XRD patterns of the Zn@Ni-MOF (a) film deposited on a nickel substrate and (b)

bulk powder form.
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Figure S4. Schematic structure of Zn@Ni-MOF. The purple and orange metal nodes represent the
Zn and Ni, respectively coordinating with the organic linker represented by the line of black

spheres.
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Figure S5. XPS elemental survey spectra of the (a) Ni-MOF/NF and (b) Zn@Ni-MOF/NF
samples.
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Figure S6. (a) Linear sweep voltammetry curves of various catalytic electrodes in 1.0 M KOH
aqueous electrolyte, (b) corresponding OER overpotential verses current density profile, and (c)
chronopotentiometric response of the Zn@Ni-MOF/NF sample recorded during the long-term

electrochemical stability test for 48 h at 100 mAcm™.
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Figure S7. Linear sweep polarization curves of the MOF/NF based electrodes in 1.0 M KOH and
0.33 M urea containing 1.0 M KOH aqueous electrolytes showing the onsets for UOR (upper figure)
and Ni**-OOH phase formation (bottom figure).
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Figure S8. XPS Ni 2p spectra exhibited by the Zn@Ni-MOF/NF anodes recorded (a) before and
(b) after electrolyzing 0.33 M urea in 1.0 M KOH aqueous solution for 600 s at 1.40 V vs RHE.
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Figure S9. Raman spectra exhibited by the MOF/NF anodes recorded after electrolyzing 0.33 M
urea in 1.0 M KOH aqueous solution for 600 s at 1.25 V and 1.40 V vs RHE.
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Figure S10. Chronopotentiometric curves exhibited by the MOF/NF based electrodes in 0.33 M
urea containing 1.0 M KOH aqueous electrolyte at 100 mAcm™. The Ni-MOF/NF electrode
showed the fluctuated curve due to the slower release of the gas bubbles residing on the electrode

surface.
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Figure S11. (a)-(c) Cyclic voltammograms of various electrodes in 0.33 M urea containing 1.0 M

KOH aqueous electrolyte at different potential scanning rates (mVs™?). (d) Linear plots obtained

by plotting the average current density (Aj) vs potential scanning rates at 1.17 V vs RHE. (e) Ca

and ECSA computed from figure (d).
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Figure S12. Cathodic linear sweep voltammetry curves of the catalytic electrodes in 1.0 M KOH

aqueous electrolyte containing 0.33 M urea.
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Table S1. Comparison of UOR performance for the Zn@Ni-MOF/NF with respect to reported

high-performance UOR electrocatalysts (including MOF-based UOR catalysts).

Electrolyte j UOR Stability
Catalyst materials | 1.0 M KOH | (mAcm?) | potential Reference
+ Urea (V) vs RHE
+0.33 M 10 1.34 100 h@ 50 mAcm™
: 100 1.47
NiFeRh-LDH 240 1 59% [1]
+05M 10 1.30 40 h@ 20 mAcm™
NiS@Ni2S/NiMoO4 100 1.46* [2]
450 1.78*
+05M 10 1.37 12 h@ 80 mAcm
NFHC 100 1.40 [3]
+05M 10 1.37 100 h@ 80 mAcm™
NiMoO-Ar/NF 100 1.42 [4]
300 1.562*
+05M 10 1.29 30 h@ 10 mAcm™
CoS2-MoS,/NF 100 1.33* [5]
350 1.35*
+05M 10 1.32 16.6 h@100 mAcm
CoMn/CoMn,04 100 136 [6]
-2
Co(OH)F/NF +0.7M 10 1.25 10 h@ 10 mAcm [7]
. +0.5M 10 1.30 30 h@ 20 mAcm
NiCoP/CC 100 157 [8]
AC-C02(OH)sCI-V- | +0.33 M 30 1 110 h@ 20 mAcm
0.1 54 [9]
hcp-CoNi-N/C +0.33 M 10 1.31 65 h@ 10 mAcm™ [11]
- +05M 10 1.35 12.5 h@ 60 mAcm™
Ni-NisP@NPC/rGO 100 142 [12]
) +05M 10 1.35 20 h@ 100 mAcm-2
Ni2P/MoO2/NF 100 139 [13]
MOF-based UOR catalysts
-2
NC-PB@CNT +0.33 M 100 141 10 h@ 100 mAcm [14]
+05M 10 1.33* 15 h@ 10 mAcm-2
Nilr-MOF/NF 100 1.35 [15]
300 1.35*
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NiCoPx@NiFeCo- +05M 10 1.27* 45 h@10 mAcm™ [16]
MOF/NF 100 1.37
500 1.58*
Ni-MOF +0.33M 10 1.36 10 h@ 20 mAcm [17]
100 1.56*
Ce0O2/Ni-MOF +0.33 M 10 1.35 10 h@ 10 mAcm™ [18]
100 1.44*
Fc-NiCo-BDC +0.33 M 10 1.35 11 h@ 10 mAcm™ [19]
100 1.44
NiC0204@Ni- +05M 10 1.27 - [20]
MOF/NF 100 1.31
400 1.32
Ni-DMAP-t/NF +05M 10 1.34 10 h@ 100 mAcm™ [21]
100 1.45
400 1.75
Ni-bza-900 +0.33M 10 1.38 - [22]
100 1.71*
NiFe-MIL-53-NH2 +0.33 M 50 1.398 20 h@ 50 mAcm™ [23]
10 12; 24 h@10 mAcm?
+0.33 M 100 1'37 +
Zn@Ni-MOF/NF 500 1'44 24 h@100 mAcm This work
1000 '
1.50
1500 152
1780 '
+0.33M 10 1.34 24 h@10 mAcm?
Ni-MOF/NF 100 1.36 This work
500 1.44

* UOR potential estimated from the linear polarization curves of the respective reported works.

SI-References

[1] H. Sun, W. Zhang, J.G. Li, Z. Li, X. Ao, K.H. Xue, K.K. Ostrikov, J. Tang, C. Wang,
Appl. Catal. B Environ. 2021, 284, 119740.

[2] L. Sha, T. Liu, K. Ye, K. Zhu, J. Yan, J. Yin, G. Wang, D. Cao, J. Mater. Chem. A. 2020,

8, 18055.




[3] Y. Feng, X. Wang, P. Dong, J. Li, L. Feng, J. Huang, L. Cao, L. Feng, K. Kajiyoshi, C.
Wang, Sci. Rep. 2019, 9, 15965.

[4] Z.-Y.Yu, C.-C. Lang, M.-R. Gao, Y. Chen, Q.-Q. Fu, Y. Duan, S.-H. Yu, Energy
Environ. Sci. 2018, 11, 1890.

[5] C. Li, Y. Liu, Z. Zhuo, H. Ju, D. Li, Y. Guo, X. Wu, H. Li, T. Zhai, Adv. Energy Mater.
2018, 8, 1801775.

[6] C. Wang, H. Lu, Z. Mao, C. Yan, G. Shen, X. Wang, Adv. Funct. Mater. 2020, 30, 2000556.
[7] M. Song, Z. Zhang, Q. Li, W. Jin, Z. Wu, G. Fu, X. Liu J. Mater. Chem. A, 2019, 7, 3697.

[8] L. Sha, J. Yin, K. Ye, G. Wang, K. Zhu, K. Cheng, J. Yan, G. Wang, D. Cao, J. Mater.
Chem. A, 2019, 7, 9078.

[9] B. Zhang, C. Pan, H. Liu, X. Wu, H. Jiang, L. Yang, Z. Qi, G. Li, L. Shan, Y. Lin, L. Song,
Y. Jiang, J. Chem. Eng. 2022, 439, 135768.

[10] Q. Zhang, F. MD. Kazim, S. Ma, K. Qu, M. Li, Y. Wang, H. Hu, W. Cai, Z. Yang, Appl.
Catal. B-Environ. 2021, 280, 119436.

[11] P. Li, Y. Huang, X. Ouyang, W. Li, F. Li, S. Tian, Chem. Eng. 2023, 464, 142570.

[12] G. Li, J. Wang, J. Yu, H. Liu, Q. Cao, J. Du, L. Zhao, J. Jia, H. Liu, W. Zhou, Appl. Catal.
B-Environ. 2020, 261, 118147.

[13] M. Yang, Y. Jiang, M. Qu, Y. Qin, Y. Wang, W. Shen, R. He, W. Su, M. Li, Appl. Catal. B-
Environ, 2020, 269, 118803.

[14] S.A. Patil, S. Cho, Y. Jo, N.K. Shrestha, H. Kim, H. Im, Chem. Eng. J. 2021, 426,
130773.

[15] Y. Xu, X.Chai, T. Ren, S. Yu, H. Yu, Z. Wang, X. Li, L. Wang, H. Wang, Chem.
Commun. 2020, 56, 2151.

[16] C.Chen, L.Jin, L. Hu, T. Zhang, J. He, P. Gu, Q. Xu, J. Lu, J. Colloid Interface Sci.
2022, 628, 1008.

[17] D. Zhu, C. Guo, J. Liu, L. Wang, Y. Du, S.Z. Qiao, Chem. Commun. 2017, 53, 10906.

S14



[18]

[19]

[20]

[21]

[22]

[23]

X. Wang, S. Song, H. Zhang, Mater. Lab. 2022, 1, 220009.

M. Li, H. Sun, J. Yang, M. Humayun, L. Li, X. Xu, X. Xue, A. Habibi-Yangjeh, K.
Temst, C. Wang, Chem. Eng. J. 2022, 430, 132733.

Z. Dai, X. Du, X. Zhang, Int. J. Hydrogen Energy. 2022, 47, 17252.

H. Jiang, S. Bu, Q. Gao, J. Long, P. Wang, C.S. Lee, W. Zhang, Mater. Today Energy.
2022, 27, 101024.

J.L. Liu, X.Y. Zhou, J.L. An, Y.Q. Wang, M.D. Zhang, L. Qin, Energy and Fuels. 2022,
36, 10346.

Z.Gao, Y. Wang, L. Xu, Q. Tao, X. Wang, Z. Zhou, Y. Luo, J. Yu, Y. Huang, Chem.
Eng. J. 2022, 433, 133515.

S15



