Supplementary Information

Propanesultone-based polymer electrolyte for high-energy solidstate lithium battery with lithium-rich layered oxides

Xin Yin^{a,b,1}, Shu Zhao^{a,b,1}, Zhiyuan Lin^{a,b,1}, Xianwei Guo^{a,b,*}, Chenjie Lou^c, Shiqi Liu^{a,b},

Boya Wang^{a,b}, Peipei Ding^{a,b}, Mingxue Tang^c, Lingqiao Wu^{a,b}, Haijun Yu^{a,b,*}

^a Institute of Advanced Battery Materials and Devices, Faculty of Materials and

Manufacturing, Beijing University of Technology, Beijing 100124, PR China

^b Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing 100124, PR China

^c Center for High Pressure Science & Technology Advanced Research, Beijing 100193,

PR China

E-mail: hj-yu@bjut.edu.cn (H. Yu), xwguo@bjut.edu.cn (X. Guo)

¹ These authors contributed equally to this paper.

^{*} Corresponding authors.

Fig. S1 The ¹H spectra and simulations for percent conversion of PPS-PE from PS monomer. The weak peaks in the range of 2.2~2.5 ppm can be indexed to the impurities.

Fig. S2 a, The GPC test of PPS-PE. b, c, The S-C and -OH bonds in FT-IR spectra of PS+Li salt precursor and PPS-PE. d, The chain-like structure of PPS-PE form PS monomer by $Sn(Oct)_2$ catalyzation.

Fig. S3 a, The photos of PPS-PE before and after polymerization. b, The flexible PPS-PE film.

Fig. S4 The EIS of SS/PPS-PE/SS symmetric cell at different temperatures.

Fig. S5 The FT-IR spectra of Li salt and PPS-PE.

Fig. S6 The changes of area ratios of free and fixed ions at different states.

Fig. S7 The configurations and binding energies between the free Li ion and a, the O atom on S=O group, b, the O atoms on S=O and S-O groups.

Fig. S8 The electrostatic potentials with the interaction between LiTFSI and PPS.

Fig. S9 The SEM image of Li anode surface after test of battery with PPS-PE.

Fig. S10 The initial charge/discharge curves of liquid electrolyte based battery with LLOs cathode material.

Fig. S11 The HOMO and LUMO energy levels of PPS, PEO, LiTFSI, LiBOB and the interactions.

Fig. S12 The potential profiles of Li plating/striping in Li/PPS-PE-LB/Li symmetric battery with current density of 0.1 mA cm⁻².

Fig. S13 The XPS spectra of B element on the cathode side after the cycling of LLOs/PPS-PE/Li battery.

Fig. S14 The SEM images of composite cathodes in (a) LLOs/PPS-PE/Li and (b) LLOs/PPS-PE-LB/Li batteries after cycling.

Fig. S15 The cycling stabilities of LLOs/PPS-PE-LB/Li batteries at current density of (a) 1C and (b) 2C.

Fig. S16 The cycling stabilities of LLOs/PPS-PE-LB/Li batteries at (a) 50 °C and (b) - 15 °C.

Fig. S17 The optical photographs for the LLOs/PPS-PE-LB/Li soft package battery that lit up a logo at a, normal, b, wrinkled and c, cutting states.

Type of peak	PS monomer				T					
	a	c	b	a1	c1	c2	b1	Impurity		
Integral area (e9)	2.36	2.36	2.35	16.69	28.71	12.61	14.20	7.55		
Percent conversion	(72.21/86.83) / (1-7.55/86.83) =91.08%									

Table S1 The relative area for each peak of PS monomer and PPS-PE from Fig. S1.

Table S2 The comparisons of charge voltages of cathode materials in the solid-state batteries, and the ions transference number of polymer electrolytes, which including the $LiNi_xCo_yMn_{1-x-y}O_2$, $LiCoO_2$, $LiNi_{0.5}Mn_{1.5}O_4$ and Li-rich cathode materials.

Composition	Anode/ Cathode	The Li ⁺ transference number	Current density	Voltage Range (V)	Initial discharge capacity (mAh/g)	Cycles	Final discharge capacity (mAh/g)	Ref.
PEGDA+BA+SN/LiTFSI	${\rm Li}/{\rm LiNi_{0.83}}Mn_{0.06}{\rm Co_{0.11}}{\rm O_2}$	0.75	1.1C	2.7-4.5V	~170	100	140	23
PEGDME/LiTFSI+LiFSI	Li/LiNi _{0.5} Mn _{0.3} Co _{0.2} O ₂	-	0.2C	2.5-4.5V	167	100	97	24
VEC+TFEMA/LiTFSI	$Li/LiNi_{0.83}Co_{0.11}Mn_{0.06}O_2$	0.44	0.1C (1C=275 mA g ⁻¹)	3.0-4.5V	218	300	~153	25
PME+LiPVFM+NMP/ LiTFSI+SN	Li/LiCoO ₂	0.62	0.5C	2.8-4.5V	196.3	50	180.4	26
VEC/LiTFSI	Li/LiCoO ₂	0.4	0.5C (1C=160 mA g ⁻¹)	3.0-4.5V	154.6	100	104.9	27
Uio-66-NH- MET+PEGDA+PETMP/ LiTFSI	Li/LiCoO ₂	0.44	0.5C (1C=148 mA g ⁻¹)	3.0-4.5V	136	100	108.8	28
PEGDA+NML+UPyMA/ LiTFSI	Li/LiCoO ₂	0.66	0.5C (1 C =180 mA g ⁻¹)	3.0-4.6V	188.5	1000	150.8	29
CUMA/SN+LiTFSI +LiDFOB	Li/LiCoO ₂	0.62	0.5C	3.0-4.6V	~220	100	~181	30
FEC/LiDFOB	EC/LiDFOB Li/LiNi _{0.5} Mn _{1.5} O ₄		0.2C (1C=148 mA g ⁻¹)	3.0-4.9V	~110	20	~90	31
PMHS+PEO+DMAA+ PS+THF/LiTFSI/Speiers	Li/LiNi _{0.5} Mn _{1.5} O ₄	0.25	0.1C (1C=170 mA g ⁻¹)	3.5-4.9V	131.5	50	126.3	32
PEGDA+NML+UPyMA/ LiTFSI	$Li/Li_{1.2}Ni_{0.13}Co_{0.13}Mn_{0.54}O_2$	0.66	0.2 C	2.1-4.9V	225	60	~220	29
PS/LiTFSI	Li/Li _{1.13} Mn _{0.517} Ni _{0.256} Co _{0.097} O ₂	0.78	0.1C 0.5C (1C=200 mA g ⁻¹)	2.0-4.8V 2.0-4.6V	270 208	100	192	This work