Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Exploring Degradation Pathways of Nickel-rich Cathode During High-Temperature Storage in High-Energy Lithium-ion Batteries

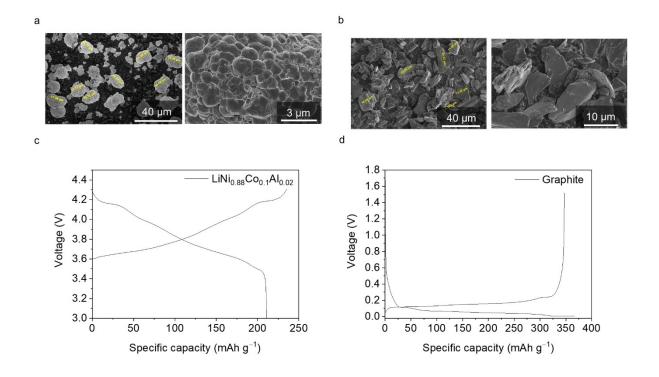
Hyungyeon Cha^{a+}, Jaeseong Hwang^a, Taeyong Lee^a, Jihyeon Kang, Minjoon Park^{b,*}, and Jaephil Cho^{a,*}

[a] Dr. H. Cha, Dr. J. Hwang, Dr. T. Lee, Prof. J. Cho

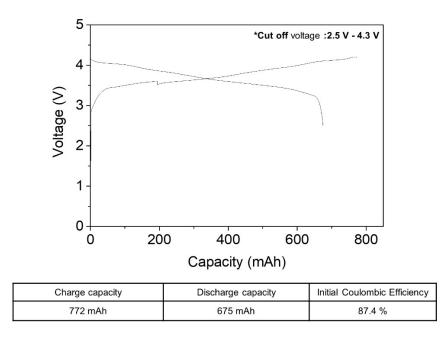
Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea

*Current address : Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States

[b] J. Kang, Prof. M. Park


Department of Nanoenergy Engineering, Pusan National University, 50, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea Research Center of Energy Convergence Technology, Pusan National University, Busandaehak-ro 63beon-gil 2, Geumjeong-gu, Busan, 46241, Republic of Korea Department of Nano Fusion Technology, Pusan National University, Busandaehak-ro 63beon-gil 2, Geumjeong-gu, Busan, 46241, Republic of Korea

*Corresponding author:mjpark@pusan.ac.kr, jpcho@unist.ac.kr


Supporting Figures and Table

	Material selection	
	Cathode	Anode
Active material	LiNi _{0.88} Co _{0.1} Al _{0.02} O ₂	Graphite
	Specific capacity: 210 mAh g ^{-1} ,	Specific capacity: 360 mAh g^{-1}
	ICE: 91%	ICE: 92%
Conductive agent	Carbon black	-
Binder	Polyvinylidene fluoride (PVDF)	Styrene butadiene rubber (SBR) and carboxymethyl cellulose (CMC)
	Electrode engineering	
	Cathode	Anode
Electrode composition (Active material:Binder:Conductive agent)	96:02:02	97:1.5:1.5
Loading level (mg cm ^{-2})	22.5	14.2
N/P ratio	1.3	
Electrode density (g cc ⁻¹)	3.6	1.5
	Full-cell assembly	I
Cell structure	Stacking type pouch cell	
	Cathode	Anode
Number of stacks	2	3
Cell dimension	68.5 mm*50 mm	72.5 mm*54 mm
Cell capacity	0.7 Ah	

 Table S1. Detailed information for the full-cell.

Fig. S1. SEM images of (a) $\text{LiNi}_{0.88}\text{Co}_{0.1}\text{Al}_{0.02}\text{O}_2$ and (b) graphite. Voltage profiles of formation step for (c) $\text{LiNi}_{0.88}\text{Co}_{0.1}\text{Al}_{0.02}\text{O}_2$ cathode at voltage range of 3.0 V - 4.3 V at 0.1C-rate and (d) graphite anode at voltage range of 0.005 V - 1.5 V at 0.1C-rate.

Fig. S2. Voltage profile of $LiNi_{0.88}Co_{0.1}Al_{0.02}O_2$ /Graphite full-cell at voltage range of 2.5 V – 4.2 V at 0.1C-rate.

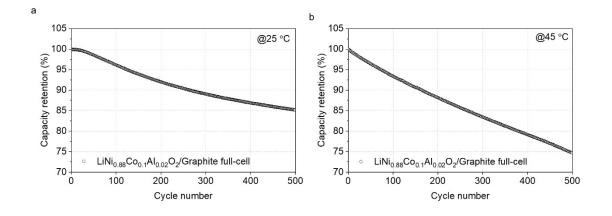
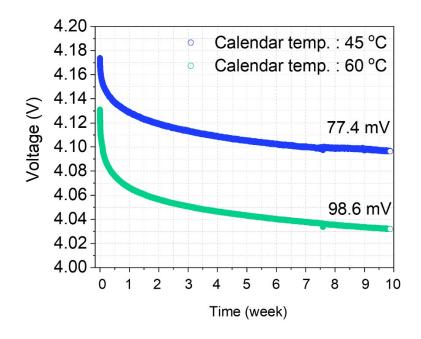
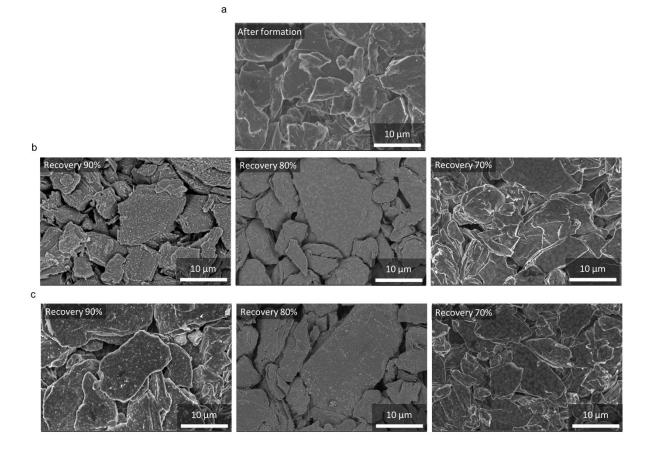
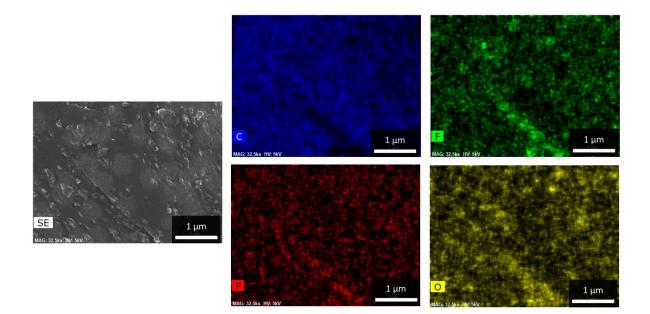
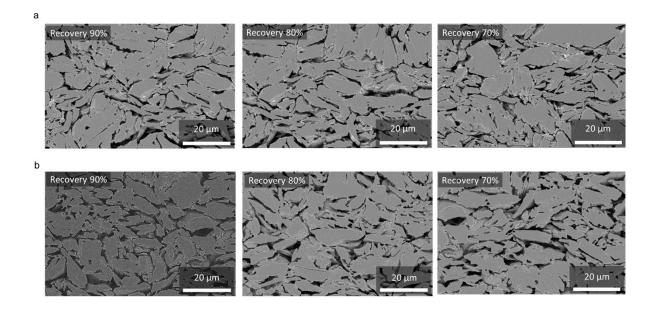


Fig. S3. Cycle performance of $LiNi_{0.88}Co_{0.1}Al_{0.02}O_2$ /Graphite full-cell at voltage range of 2.5 V –

4.2 V at 1C-rate at (a) room temperature (25 $^\circ\text{C})$ and (b) 45 $^\circ\text{C}.$


Fig. S4. Self-discharge during calendar life test at 45 °C and 60 °C

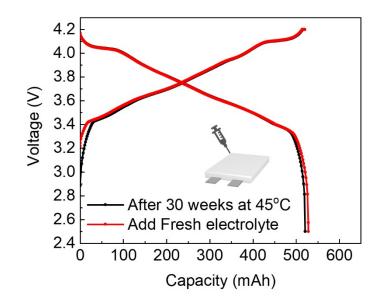

Fig. S5. (a) SEM images graphite anodes after formation. SEM images of graphite anodes of the full-cell with recovery 90%, 80% and 70% stored at (b) 45 °C and (c) 60 °C.

Fig. S6. (a) EDX mapping images of graphite surface, showing capacity retention of 70% after storing at 60 °C.

Fig. S7. Cross-section SEM images of graphite anodes of the full-cell with recovery 90%, 80% and 70% stored at (a) 45 °C and (b) 60 °C.

Fig. S8. Voltage profiles of full-cells after 30 weeks stored at 45 °C and after adding 1 mL of electrolyte

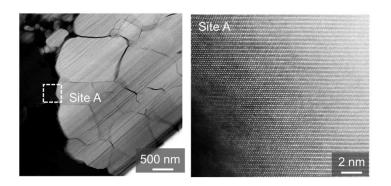


Fig. S9. HR-TEM images of $LiNi_{0.88}Co_{0.1}Al_{0.02}O_2$ particle after storage at 60 °C for 10 weeks

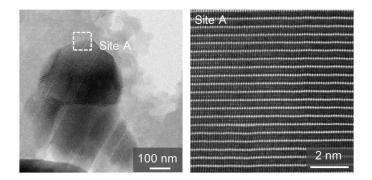


Fig. S10. HR-TEM images of $LiNi_{0.88}Co_{0.1}Al_{0.02}O_2$ particle before storage