Supplementary information

In situ fabrication of NiO nanoparticles / single-layered MXene nanosheet Schottky heterojunction toward sensing xylene and formaldehyde

Xueying Song,^a Kuikun Gu,^a Qinwei Zhang,^a Linhu Jin^a, Chunfeng He* and Mingzhe Zhang*^a

^a State Key Laboratory of Superhard Materials, college of physics, Jilin University, Changchun 130012, People's Republic of China. Email address: <u>zhangmz@jlu.edu.cn</u>, <u>hecf@jlu.edu.cn</u>

Fig. S1 SEM image of (a) single layered MXene (b) NiO and (c) NiO-MXene.

Fig. S2 AFM of single-layer $Ti_3C_2T_x$ MXene

Fig. S3 Wide XPS spectrum of pure NiO and NiO-Ti $_3C_2T_x$ MXene composites.

Fig. S4 The response of pure NiO based sensor to 500 ppm xylene at room temperature.

Fig. S5 (a) The linear fitting of response curve of NiO-MXene based sensors. (b) The linear fitting of response curve of NiO-MXene based sensors.

Fig. S6 The long-term stability of NiO-MXene based sensor at room temperature to a variety of xylene concentrations

Fig. S7 (a) The long-term stability of pure NiO based sensor at 170° C to a variety of formaldehyde concentrations;(b) The long-term stability of NiO-MXene based sensor at 170° C to a variety of formaldehyde concentrations.

Fig. S8 The response values of NiO-MXene based sensors to 100 ppm xylene at different operating temperature

sample	test gas	Temperature	concn	response	Response/	ref
			(ppm)	(%)	recovery	
NiO/NiCr ₂ O ₄	xylene	225 °C	100	66.2 b	1217s	[51]
					/591s	
Sn-doped NiO	xylene	225°C	100	20.2b	298s/223s	[54]
W-doped NiO	xylene	375°C	200	8.62 b	178s/152s	[53]
Au-loaded	xylene	250°C	5	2.5b	118s/289s	[52]
MoO ₃			-			
Cr-doped NiO	xylene	325°C	50	88 b	144s/50s	[20]
NiO/MXene	xylene	25°C	500	92a	185s/190s	this
						work

 Table S1 Comparison of xylene sensing performance to different gas sensors.

Table S2 Comparison of formaldehyde sensing performance to different gas sensors.

sample	test gas	Temperature	concn	response	Response/	ref
			(ppm)	(%)	recovery	
ZnO-TiO ₂	НСНО	25°C	20	88.9 a	30s/445s	[55]
In_2O_3	НСНО	420°C	100	1.7 b	48s/58s	[56]
NiO coral like structures	НСНО	300°C	190	292 a	24s/42s	[57]
Sn-NiO	НСНО	230°C	100	16.3b	107s/10s	[58]
Pt-loaded NiO	НСНО	200°C	1000	8.4b	102s/70s	[59]
NiO/MXene	НСНО	170°C	100	11.4 b	53s/21s	this work

a S= (Rg-Ra) / Ra * 100%

b S= (Rg / Ra)

The Schottky barrier values can be obtained according to the formula of the 2 D thermal electron emission theory, i. e., the relation between current and voltage. The height of the Schottky barrier measured by thermal activation is actually a combination of the I-U method and the activation energy method. The quality factor n, the effective Richard constant A_{2D} ^{*}, and the Schottky barrier height Φ_B can be determined. If the Schottky barrier is formed on a high-mobility semiconductor, the electron through the Schottky barrier is mainly generated by the hot electron emission effect. The energy level distribution of the thermal electrons satisfies the Fermi-Dirac distribution, so the current I of the barrier and the applied voltage satisfy the following relationship:

$$I = I_0 exp[\frac{q(U - IR)}{nkT} - 1]$$
.....(1)

Where A is the contact area of the metal-semiconductor node, A_{2D}^* is the Richard constant, q is the amount of electron charge, Φ_B is the Schottky barrier height value, k is the Boltzmann constant, n is the quality factor, and U is the voltage. When q (U-IR) ≥ 3 kT, there is an approximation:

$$I = I_0 e^{q(U - IR)/nkT} \dots (3)$$

Regardless of n, R with temperature, $n \approx 1$, there is an approximation:

$$I = I_0 e^{qU/kT} = A A_{2D}^* e^{q(U - \Phi_B)/kT} \dots (4)$$

It can be sorted out:

$$In\left(\frac{I}{T^{2}}\right) = InAA_{2D}^{*} - \frac{q(\Phi_{B} - U)}{1000k} * \frac{1000}{T}....(5)$$

Measure the current at different temperatures and make the $In\left(\frac{I}{T^2}\right) - \frac{1000}{T}$ line, and

U(V)	0.16	0.16	0.16	0.16	0.16
	00414	001.40	000000	5100.05	
I(µA)	294.14	921.48	2355.69	5189.97	7006.79
T(K)	374.15	384.15	404.15	424.15	444.15
1(11)	071110	20112	10 11 10	12	

the Schottky barrier height can be determined from the intercept and slope.

To obtain the corresponding relationship curve based on the above data:

We can see from the figure that Y=-17.27-1.16X, where $-\frac{q(\Phi_B - U)}{1000k}$ =-1.16 and can obtain Φ_B =0.26V.

References

20 C. Feng, X. Kou, X. Liao, Y. Sun and G. Lu, Rsc Adv., 2017, 7 (65), 41105-41110.

51 H. Y. Gao, J. Guo, Y. W. Li, C. L. Xie, X. Li, L. Liu, Y. Chen, P. Sun, F. M. Liu,

X. Yan, F. M. Liu, G. Y. Lu, Sens. Actuators B Chem., 2019, 284, 305-315.

52 L. L. Sui, X. F. Zhang, X. L. Cheng, P. Wang, Y. M. Xu, S. Gao, H. Zhao and L.

H. Huo, ACS Appl. Mater. Interfaces., 2017, 9 (2), 1661-1670.

53 C. H. Feng, C. Wang, H. Zhang, X. Li, C. Wang, P. F. Cheng, J. Ma, P. Sun, Y. Gao, H. Zhang, Y. F. Sun, J. Zheng and G. Y. Lu, Sens. Actuators B Chem., 2015,

221, 1475-1482.

54 H. Y. Gao, D. D. Wei, P. F. Lin, C. Liu, P. Sun, K. Shimanoe, N. Yamazoe and G.

Y. Lu, Sens. Actuators B Chem., 2017, 253, 1152-1162.

55 J. B. Park, J. H. Lee, M. S. Choi and J. S. Huh, Chemosensors, 2023, 11 (2).

56 W. Yang, P. Wan, X. D. Zhou, J. M. Hu, Y. F. Guan and L. Feng, Sens. Actuators B Chem., 2014, 201, 228-233.

57 S. Dey, S. Santra, S. Sen, D. Burman, S. K. Ray and P. K. Guha, IEEE Sens. J., 2018, 18 (14), 5656-5661.

58 L. Xu, M. Y. Ge, F. Zhang, H. J. Huang, Y. Sun and D. N. He, J.Mater. Res, 2020, 35 (22), 3079-3090.

59 C. J. Dong, Q. Li, G. Chen, X. C. Xiao and Y. D. Wang, Sens. Actuators B Chem., 2015, 220, 171-179.