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Experimental Methods

Synthesis of Electrolytes

The ZCEs were prepared by first mixing ZnCl, (6.815 g, 99.99%, Alfa Aesar, pre-dried
in vacuum oven) with D. I. HO with a molar ratio of 1:2.2 under stirring at 75 °C until
the transparent liquid was formed, followed by adding certain amount of cellulose (a-
cellulose, C804600, Shanghai Macklin Biochemical Co., Ltd.) or tissue paper (0.2g,
0.6g, 1.0g) and continuous stirring until transparent.

Fabrication of artificial SEI on Zn

Galvanostatic charging method was applied on commercial Zn foil (99.99 %, 0.1 and
0.2 um, Guantai metal material Co., Ltd), at 10 mA cm for a certain deposition time,
e.g., 1 to 3 h. After treatment, the Zn foil was washed with DI water and soaked in DI
water, then dried at 60°C in vacuum oven for overnight. The samples were labelled as
Zn-ZCE-x-yh, where x corresponds to the label for ZCEs, and y represents the duration
in hours.

Material Characterizations

X-ray diffraction (XRD) were collected on a Bruker D8 Advance A25 X with Cu K,
irradiation (A=1.5418 A). The Fourier transform infrared spectroscopy (FTIR-ATR)
was recorded by Shimadzu Instrument IR Tracer-10 with the attenuated total reflectance
compartment. Scanning electron microscopy (SEM) images and energy dispersive X-
ray spectra (EDX) of the electrode were collected on a JSM-7900F. XPS spectra were
collected by Kratos AXIS Supra XPS with dual anode (Al/Ag Ka) X-ray
monochromatic source.

DFT calculations

Zn(OHZ)n]2 * . 2Cellulose

DFT calculations for clusters [ were performed using

2+
Gaussianl6,! to investigate the coordination between [2n(0H3),] and Cellulose,

Specifically, all molecular geometries were optimized using the M06-2X functional
with 6-31+g(d,p) basis set.? And frequency calculations were performed to verify the
optimized minima.

The formation energy Ef of clusters was computed as below:

Ep=E([2n(0H,),])* " - 2Cellulose) - nE(H,0) - E(Zn* ") - 2E(Cellulose)

2
whereE([Zn(OHZ)n] t. 2Cellulose)’ E(HZO)’ E(an +), and E(Cellulose) denote

2
the total energy Of [Zn(OHZ)n] * .Zcellulose’ HZO, Zn2+, and Cellulose’

respectively.

The formation energies Ef were used to plot the convex hull vs. the number of H,0

(n),
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which indicates the stable phases of clusters with increasing number of HZO. As shown

by the dashed line in Figure S2, n=1,4,5,6 are stable phases with a flattened slop to the
next point in comparison with that to the previous one.
The charge density difference is calculated as:

Ap = ,()([Zn(OHZ)n]2 t. ZCellulose) - ,()([Zn(OHZ)n]2 +) - p(2Cellulose)
where p([Zn(OHZ)n]2 t. 2Cellulose)’ ,0([Zn(0H2)n]2 +)’ and p(2Cellulose)

[Zn(0H)),)** - 2Cellulose [Zn(0H,),1** |

correspond to electron density of

[Zn(0H,),1**

2Cellulose respectively. Specifically, the geometries of and

2Cellulose were taken from the geometry of [Zn(0Hy),)" " - 2Cellulose,

Electrochemical characterizations

Linear sweep voltammetry (LSV) and cyclic voltammetry (CV) were carried out to
determine the EWs of electrolytes by DH 7000 (Jiangsu Donghua Analytical
Instrument Co., Ltd.) in a two-electrode cell with Pt foil as the work electrode, Zn foil
as the counter electrode, at a scan rate of 1 mV-s~!. Tafel curves were conducted in a 3-
electrode configuration, with commercial Zn foil or ZCE-Zn as the working electrode,
leakless type Ag/AgCl as the reference electrode, and Pt as the counter electrode, using
the electrolytes of ZCEs or 2M Zn(OTY), aqueous solution by commercial Zn(OT¥),
(98 %, Sigma-Aldrich). The electrochemical impedance spectroscopy (EIS)
measurements were carried out on DH 7000 electrochemical workstation in a frequency
ranging from 0.1 Hz to 1.0 MHz with an AC amplitude of 1 mV. The ionic
conductivities of electrolytes were measured by FE38 conductivity meter (Mettler
Toledo). To calculate the transference number, current-time curve of Zn|Zn symmetric
cell with electrolytes were measured after a constant potential of 10 mV. EIS spectra
were collected before and after measurement. From chronoamperometry and

t
impedance data, the Zn?* transference number ( Z n?t ) was calculated by the following

equation:> 4
I.(AV - I,R,)

t e
m*t I,(AV - I,R)
Where AV is the applied constant polarization (10 mV), Iy and Ry are the initial current

and resistance, and I and Ry are the steady-state current and resistance, respectively.

Note that the resistances here refer to the charge transfer resistances.

Zn plating/striping



Symmetric Zn|Zn cells were assembled in coin cell configuration using Zn foil
(p=16mm ) with glassy fiber (Whatman, GF/F) as the separator. The coin cells were
tested on Neware battery testers, with constant current densities and capacities of 1 mA
cm? and ImAh cm2, 10 mA ¢cm™ and 10 mAh cm2, 50 mA ¢cm? and 50 mAh cm=. To
determine the Coulombic efficiencies (CEs) of electrolytes, asymmetric Ti|Zn cells
were measured at 1 mA cm? and 1 mAh cm™2.

AC/Zn full cell

The slurry was formulated by commercial AC (Kurary YP-80F), Super P (ECP-600JD)
and PVDF in a weight ratio of 8:1:1. After casting and vacuum drying, the electrode on
Ti mesh was with a mass loading of active material ~2 mg cm=. The coin cell was then
assembled using the AC electrode (12 mm), ZCE-0 or ZCE-2, glassy fiber separator
(19 mm), and the commercial Zn foil (16 mm) in CR2016 configuration. The
galvanostatic charge/discharge curves were measured in the potential range of 0.3-1.9
V by Neware battery tester.

V>0s/Zn full cell

V,05 nanosheets were synthesized by the previously reported process in large scale and
the electrode preparation was conducted based on the previous report.®> Briefly, the
slurry was formulated by the synthesized V,0s and Super P (TIMCAL) in a weight
ratio of 8:2. After casting and vacuum drying, the binder-free electrode on stainless
steel mesh was with a mass loading of active material ~1.5-2 mg cm2. The coin cells
were assembled with 2M Zn(OTY), as electroltye, and either commerial Zn or ZCE-Zn
as anode. The galvanostatic charge/discharge curves were measured in the potential
range of 0.3-1.8 V by Neware battery tester.



Figure S1. a) A regenerated cellulose film from ZCE-2 when soaked in excess ethanol.
b) A series of complex electrolytes prepared by dissolving tissue paper in ZnCl, DES
(i.e., ZCE-Px, x=1, 2, 3), following the same protocol as ZCEs.
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Figure S2. The formation energies Ep v, the number of H,0 (n) for clusters
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Table S1. A summary of onset potentials of Zn/Zn?>* and OER, with the corresponding
EW values for ZCEs.

Onset potential of Zn

OER Electrochemical
Electrolyte deposition
(V v.s. Zn/Zn?*) window (V)
(V v.s. Zn/Zn?*)
ZCE-0 -0.03 1.96 1.99
ZCE-1 -0.02 1.95 1.97
ZCE-2 -0.03 3.29(8) 3.32
ZCE-3 -0.03 3.87 3.90
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Figure S3. CV spectra of ZCEs showing the characteristics of Zn stripping/plating. The
negative onset potentials of ZCEs from CV are consistent with the results from LSV,
indicating the reduction potential of Zn. Stripping feature of deposited Zn was then
followed by the positive scan. Following the discussion in Ref ¢, CE was evaluated by
asymmetric Ti|Zn cell under constant capacity and constant current mode.
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Figure S4. (a) Coulombic efficiencies (CEs) of Ti|Zn cells with 2 M ZnCl, and 2 M
ZnSO, reference electrolytes. (b) CE for ZCE-2 for ZCE-2 at 1 mA cm™? and 1 mAh
cm? for 150 cycles, and (c) at 10 mA cm™? and 10 mAh cm2, and (d) 50 mA c¢cm™ and
50 mAh cm2, where the insets present the polarization curves at 1st, 50th and 100th
cycle, respectively.



Table S2. Summary of corrosion potentials and corrosion currents for the electrolytes.

Electrolyte

Corrosion potential

Corrosion current

(V v.s. Ag/AgCI) (mA-cm-?)
2 M ZnCl, -0.940 3.01
ZCE-0 -0.658 0.29
ZCE-1 -0.658 0.23
ZCE-2 -0.650 0.19
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Figure S5. (a) EIS spectra of symmetric cells of stainless steels to estimate the ionic

1
oOo=\|—|—
conductivities of ZCEs. The estimation was based on (S)R , where R is the contact

resistance (Q2), S is taken to be 2.01 cm?, and | is approximated to be 50 um. And a
contact resistance of 6.8 Q has been corrected. (b) Summary of conductivities by EIS
and conductivity meter.
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Figure S6. Voltage profiles comparing ZCE-0 and ZCE-2 at 10 mA c¢cm™ and 10 mAh
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Figure S7. EIS spectra of Zn|Zn before and after 200 cycles with ZCE-2 at (a) 10 mAh
cm? and (b) 50 mAh cm?2, and with ZCE-3 at (¢) 10 mAh cm™, respectively. (d)
Equivalent circuits for OCV and after cycling, with the fitted data for ZCE-2 and
ZCE-3.
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Table S3. DOD values for Zn in current ZnCl,-based electrolytes, in Zn|Zn symmetric
cells, which are typically below 6%.

Current density,

. X Lifespan Zn foil Calculated
Electrolyte Working mode Step capaci . Reference
y g (mA-cnf-Z n":Ah-tgm‘z) (h)  thickness (mm) DOD (%)
X i . constant current Adv. Funct. Mater.
ZnCl2:TMU:H20=1:3:1 constant capacily 1,1 2000 0.03 5.7 2022, 2209065,
N constant current Angew. Chem. Int.
ZnClz:EG=1:4 constant capacit 1,1 3200 0.1 17 Ed. 2022, 61,
paclty €202206717.
) . . constant current Adv.Mater.2022, 34,
ZnCl2:Zn(OAc)2:H20=10:6:30.5 constant capacity 02,02 1000 0.08 0.42 2501744,
constant current Angew. Chem. Int. Ed.
7.6 m ZnCl>+0.05 m SnClz constant capacity 3,3 500 2.54 0.20 2021, 60, 13845,
i . —q.-24- constant current 0.15 J. Am. Chem. Soc.
ZnClzDMSO:H,0=1:347.8 constant capacity 05,05 1000 estimate 0.57 2020 142, 21404,
. constant current 0.15 Chem. Commun.,
5 m ZnClz+5 m Betaine constant capacity 11 900 estimate 1.1 2022, 58, 8504-8507.
constant current 0.15 Chem. Commun.,
30 m ZnClz constant capacity 02,0033 600 estimate 14 2018,54, 14097.
i i . constant current 0.15 Adv. Funct. Mater.
ZnClzAce:H20=1:3:1 constant capacity 0.1,0.1 1500 estimate 0.1 2021, 31, 2102035.
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Figure S8. EDX mapping for the cycled Zn after stripping/plating in Zn|Zn symmetric
cells for 1000 cycles with a) ZCE-0 and b) ZCE-2, respectively.
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Figure S9. a) Grazing angle XRD patterns of Zn foils after stripping/plating in Zn|Zn
symmetric cells for 1000 cycles with ZCE-0 and ZCE-2. b) XRD patterns comparing
the intensity ratios of Zn (002)/(101), which are 0.44, 0.94, and 1.08 for Zn foil, cycled
Zn in ZCE-0, and cycled Zn in ZCE-2, respectively.
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Figure S11. a) Rate performance of the AC/Zn cells with ZCE-2 and ZCE-0. AC/Zn
cells comparing ZCE-0 and ZCE-2 at 1 A g'! with b) charge/discharge curves and c¢)
cycling performance.

At 1A g'!, stable cycling with ZCE-2 can proceed for 1500 cycles, with an initial
discharge capacity of ~57.8 mAh g'! and ~60.6 mAh g at 1500™ cycle. This contrasts

with only ~166 cycles with ZCE-0, where the short circuit is attributed to Zn dendrite
growth.
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Figure S12. Optical images of a) Zn-ZCE-2-1h and b) Zn-ZCE-3-3h.
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Figure S13. SEM images of Zn-ZCE-0-1h with a) in-plane view with b) the magnified
view, and c) cross section view with d) the magnified view where a deposited layer of
~30.7 um can be observed.
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Figure S14. XRD pattern of the deposited surface by ZCE-3 for 3h (Zn-ZCE-3-3h),
presenting the broad diffraction peak at ~12.9°.
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Figure S15. XPS spectra of Cls for a) cellulose and b) Zn-ZCE-2-1h.
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Figure S16. XPS spectra of Zn 2p for a) bare Zn, b) Zn-ZCE-0-1h, ¢) Zn-ZCE-Zn-1h,
and d) Zn-ZCE-Zn-3h, respectively, where the deconvoluted peaks are assigned to Zn°
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Figure S17. Time-dependent study of ZCE growth on Zn, where the SEI formation was
observed on the electrode during deposition.
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Figure S18. XPS depth profile for the artificial SEI on Zn concerning (a) Cl 2p and (b)
Zn 2p, with a step sputtering depth of ~8 nm.
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Figure S20. Transference number for the cell with bare Zn in 2M Zn(OTY),, where the

inset presents the EIS spectra before and after polarization.
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