Supporting information

Combining *in situ* electrochemistry, *operando* XRD & Raman and density functional theory to investigate the fundamentals of Li₂CO₃ formation in supercapacitor

Bruno Freitas^a, Willian Nunes^a, Carla Real^a, Cristiane B. Rodella^b, Gustavo Doubek^c, Leonardo Morais da Silva^d, Ericson H. N. S. Thaines^{e,f}, Leandro A. Pocrifka^f, Renato Garcia Freitas^{e*}, Hudson Zanin^{a*}

^aAdvanced Materials Labs and Manufacturing Group; Advanced Energy Storage Division; Center for Innovation on New Energies; University of Campinas; Av. Albert Einstein 400, Campinas, SP 13083-852, Brazil.

^bBrazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP 13083-970, Brazil.

^cAdvanced Energy Storage Division, Center for Innovation on New Energies, Laboratory of Advanced Batteries, University of Campinas, School of Chemical Engineering, Av. Albert Einstein 500, 13083-852, Campinas - SP, Brazil.

^dDepartment of Chemistry, Laboratory of Fundamental and Applied Electrochemistry, Federal University of Jequitinhonha e Mucuri's Valley, Rodovia MGT 367, km 583, 5000, Alto da Jacuba, 39100-000, Diamantina - MG, Brazil.

^eInstitute of Physics & Department of Chemistry, Laboratory of Computational Materials, Federal University of Mato Grosso, 78060-900, Cuiabá - MT, Brazil.

^fLaboratory of Electrochemistry and Energy, Chemistry Postgraduate Program of Federal University of Amazonas, 69067-005, Manaus - AM, Brazil.

*Corresponding authors:

hzanin@unicamp.br, cristiane.rodella@lnls.br, doubek@unicamp.br, leonardo.morais@ufvjm.edu.br, rgfreitas@pq.cnpq.br

Figure S1. Measurements under dynamic polarization conditions: a) coin cell set up; b) top view of the coin cell installed in metallic adapter and positioned on the sample stage at the XPD beamline. There is a hole on the center of the coin cell which is covered with with a Kapton[®] foil to be transparent to the income and outcome x-ray and; c) a lateral view of the coin cell and the exhibiting the electrical contacts.

Figure S2. Electrochemical data from symmetric coin cell filled with a 1 M Li_2SO_4 aqueous solution (a) Voltammetric curves up to 2.2 V; (b) chronoamperometry from 0.2 V to 2.2 V; (c) galvanostatic charge/discharge curves up to 2.2 V; (d) electrochemical impedance spectroscopy at constant cell voltages from 0.2V to 2.2V in steps of 0.4V and; (e) Coin cell set up for electrochemical measurements. (e) Cyclic voltamograms for MWCNT and (f) for NiO@MWCNT.

Figure S3. *Operando* XRD from MWCNTs electrodes in the coin cell. All XRD diffraction patterns were obtained under constant voltage during anodic polarization for MWCNTs anode (positive pole) green lines and MWCNTs cathode (negative pole) orange lines.

Figure S4. SEM data from (a) Pristine NiO@MWCNT electrode; electrodes after chronoamperometry of 30 min. (b) positive; (c) negative. EDS data from (d) Pristine NiO@MWCNT electrode; electrodes after chronoamperometry of 2.0 hours. (e) positive; (f) negative.

Figure S5. Coin cell used for electrochemical analysis: a) open-up coin cell after abusive regime of voltage applied; b) & c) undamaged coin cell under 1.6 V voltage; d) & e) damaged coin cell under 1.8 V voltage.

Figure S6. DFT calculation for SWCNT: a) relaxed; b) ELF. Ni-doped SWCNT: c) relaxed; d) ELF. SWCNT with vacancy: e) relaxed; f) ELF. NiO-doped SWCNT: g) relaxed; h) ELF.

	Pristine electrode		Positive electrode		Negative electrode	
Element	Weight	Atom	Weight	Atom	Weight	Atom
	(%)	(%)	(%)	(%)	(%)	(%)
C _K	8.732	22.952	17.284	35.075	10.645	29.281
O _K	18.729	36.959	26.484	40.346	9.342	19.29
S _K	-	-	1.991	1.514	8.697	8.962
Fe _L	24.313	13.745	25.724	11.227	17.031	10.075
Ni _L	42.333	22.765	28.516	11.838	28.892	16.258
Cr _K	5.893	3.578	-	-	25.393	16.134

Table S1. Elemental analysis via EDS of electrodes

 Table S2. Bond lengths armchair single wall carbon nanotubes

Distance (Å)	SWCNT (CNT)	Ni-doped SWCNT (CNT_Ni)	NiO-doped SWCNT (CNT_NiO)	SWCNT with vacancy (CNT_v0)	Ni-doped SWCNT with vacancy (CNT_Ni_v0)
C1 – C2	1.4215	1.4496	1.4313	-	1.4458
C1 – C5	1.4392	1.4042	1.4077	-	1.4001
C3 - C4	1.4213	1.4490	1.4311	-	1.4397
C3 – C6	1.4398	1.4044	1.4073	-	1.4072
C7 - C8	1.4217	1.4043	1.3914	-	1.3866
C7 – C9	1.4216	1.4040	1.3911	-	1.4014
C1 – Ni	1.4217	1.7848	1.8467	-	1.7991
C3 – Ni	1.4216	1.7853	1.8446	-	1.7887
C7 – Ni	1.4394	1.8999	1.8446	-	1.9036
C1' – C2'	1.4215	1.4246	1.4231	1.3689	1.3573

C2' – C3'	1.4217	1.4199	1.4193	1.4517	1.4595
C3' – C4'	1.4394	1.4336	1.4349	1.4320	1.4338
C4' – C5'	1.4217	1.4250	1.4210	1.5425	1.5422
C5' - C6'	2.4355	2.4454	2.4365	1.5707	1.5906
C6' – C7'	1.4216	1.4159	1.4186	1.5427	1.5330
C7' – C8'	1.4398	-	-	1.4321	1.4390
C8' – C9'	1.4216	-	-	1.4519	1.4441
C9' – C1'	1.4217	-	-	1.3688	1.3563