Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Figure S1. (a) Schematic of the sandwich-type cell in a disassembled view. (b) Optical image of the sandwich-type cell in an assembled view. (c) Illustration of Zn foil coated with epoxy. Note that the numbers correspond to the following: 1) Acrylic sheets, 2) Ni current collector, 3) GDL or carbon cloth coated with electrocatalyst, 4) polypropylene film, 5) GPE, and 6) Zn foil.

Figure S2. (a) Three-electrode setup for CV tests at the air electrode. (b) Three-electrode setup for CV tests at the Zn electrode.

Figure S3. (a) Cyclability test at 21 °C and 10 mA cm⁻² for ZAB using GPE-KOH and Pt/RuO₂ coated CC as the air electrode. (b) Cyclability test at 21 °C and 10 mA cm⁻² for ZAB using GPE-KOH and (Co,Fe)₃O₄ coated GDL. (c) Rate test results for ZABs using GPE-KOH with (Co,Fe)₃O₄ on GDL and Pt/RuO₂ on CC as the air electrode at 21 °C.

Figure S4. (a) Cyclability test at $^{21^{\circ}C}$ and 10 mA cm⁻² for ZAB using GPE-KOH in different seasons. (b) Full view of the lifetime test for ZAB using GPE-KOH. (c) Cyclability tests at different temperatures for ZABs using GPE-KOH and (Co,Fe)₃O₄ coated GDL at (c) 2 mA cm⁻², (d) 5 mA cm⁻², (e) 10 mA cm⁻².

Figure S5. (a) Cyclability test at 10 mA cm⁻² using aqueous 6 M KOH+2 M KI+0.4 M ZnO as the electrolyte and GDL with $(Co,Fe)_3O_4$ decorated N-CNTs as the air electrode. Cyclability tests at different temperatures for ZABs using GPE-KOH-KI and Pt/RuO₂ coated CC at (b) 2 mA cm⁻², (c) 5 mA cm⁻², and (d) 10 mA cm⁻².

Figure S6. Comparison of rate test results for ZABs using $(Co,Fe)_3O_4$ coated GDL with GPE-KOH and Pt/RuO₂ coated CC with GPE-KOH-KI at (a) ^{21°C}, (b) ^{-3°C}, (c) ^{-28°C}, and (d) ^{-41°C}.

Figure S7. Cyclability test results for ZABs using $(Co,Fe)_3O_4$ coated GDL with GPE-KOH and Pt/RuO₂ coated CC with GPE-KOH-KI at 2 mA cm⁻² at (a) ^{21°C}, (b) ^{-3°C}, (c) ^{-28°C}, and (d) ^{-41°C}.

Figure S8. Comparison of cyclability test results for ZABs using $(Co,Fe)_3O_4$ coated GDL with GPE-KOH and Pt/RuO₂ coated CC with GPE-KOH-KI at 5 mA cm⁻² at (a) ^{21°C}, (b) ^{-3°C}, (c) ^{-28°C}, and (d) ^{-41°C}.

Figure S9. Cyclability test results for ZABs using $(Co,Fe)_3O_4$ coated GDL with GPE-KOH and Pt/RuO₂ coated CC with GPE-KOH-KI at 10 mA cm⁻² at (a) ^{21°C}, (b) ^{-3°C}, and (c) ^{-28°C}. (d) XRD patterns for pristine Zn foil and the Zn electrode after cycling using GPE-KOH-KI at ^{21°C} and 10 mA cm⁻² for 100 h.

Figure S10. (a) Absorbance vs. KI concentration. This plot was created using the data in Figure 7d. UV-vis spectra for (b) sample A after discharge and with repeated diluted samples to confirm reproducibility, and (c) solutions with different concentrations of KI and KIO₃. (d) The three-electrode setup for the half-cell discharge process.

				11.00		 (0.1)		
under diffe	rent test	conditions						
			•		-		U	
							<u> </u>	

Table S1. Summary of rate test battery efficiencies and power densities for ZABs using GPE-KOH

	Effici	es (%)			
Temperature (°C)	2 mA cm ⁻²	5 mA cm ⁻²	10 mA cm ⁻²	20 mA cm ⁻²	Peak power density (mW cm ⁻²)
21	68	67	63	59	127
-3	64	60	54	45	38
-28	58	51	43	27	17
-41	55	49	41	Failed	11

	2 mA cm ⁻²		5 mA cm ⁻²		10 mA cm ⁻²	
Temperature	Initial	Final	Initial	Final	Initial	Final
	Efficiency	Efficiency	Efficiency	Efficiency	Efficiency	Efficiency
	(%)	(%)	(%)	(%)	(%)	(%)
21	68	60	64	57	63	53
-3	63	59	59	53	59	52
-28	58	54	50	43	50	41
-41	46	39	42	32	Failed	Failed

Table S2. Summary of cyclability test battery efficiencies for ZABs using GPE-KOH under different test conditions

Table S3. Summary of rate test battery efficiencies and power densities for ZABs using GPE-KOH-KI under different test conditions

	Effici	Efficiency at different current densities (%)							
Temperature (°C)	2 mA cm ⁻²	5 mA cm ⁻²	10 mA cm ⁻²	20 mA cm ⁻²	Peak power density (mW cm ⁻²)				
21	80	77	73	67	98				
-3	76	72	68	61	27				
-28	68	63	54	31	22				
-41	61	50	37	Failed	11				

	Efficience	Efficiency improvement at various current densities (%)							
Temperature (°C)	2 mA cm ⁻²	5 mA cm ⁻²	10 mA cm ⁻²	20 mA cm ⁻²					
21	18	15	16	14					
-3	19	20	26	36					
-28	17	24	26	15					
-41	11	2	-10	Both failed					

Table S4. Summary of rate test battery efficiency improvement for ZABs using GPE-KOH-KI under different testing conditions when compared with ZABs using GPE-KOH

Table S5. Summary of cyclability test battery efficiencies for ZABs using GPE-KOH-KI under different test conditions

	2 mA cm ⁻²		5 mA cm ⁻²		10 mA cm ⁻²	
Temperature	Initial	Final	Initial	Final	Initial	Final
(°C)	Efficiency	Efficiency	Efficiency	Efficiency	Efficiency	Efficiency
	(%)	(%)	(%)	(%)	(%)	(%)
21	77	73	74	66	71	52
-3	73	65	71	57	65	45
-28	65	61	60	52	55	Failed
-41	61	53	52	43	Failed	Failed

	2 mA	cm ⁻²	5 mA cm^{-2}		10 mA cm ⁻²	
Temperature	Initial	Final	Initial	Final	Initial	Final
(°C)	Efficiency	Efficiency	Efficiency	Efficiency	Efficiency	Efficiency
	(%)	(%)	(%)	(%)	(%)	(%)
21	13	22	16	16	13	-2
-3	16	10	20	8	10	-13
-28	12	13	20	21	10	None
-41	33	36	24	34	N/A	N/A

Table S6. Summary of cyclability test initial and final battery efficiency improvements for ZABs using GPE-KOH-KI under different test conditions when compared with ZABs using GPE-KOH

Electrolyte	Current Density (mA cm ⁻²)	Temp. (°C)	Catalyst	Maximum Power Density (mW cm ⁻²)	Initial Battery Efficiency (%)	Cycling Time (h)	Ref.
		21		127	68	100	
ODE VOU	2	-28		17	58	100	
GPE-KOH		-41	$(Co,Fe)_3O_4$	11	46	100	
	10	21		127	61	260	
		21		98	77		I his work
	2	-28		22	65	100	
GPE-KOH-KI		-41	Pt/RuO ₂	11	61	100	
	5	21		98	77		
	1	25		11.8	66	10	1
PAM-PAA	1	-20	Pt/RuO ₂	8.2	55	10	· 1
Cellulose- PAA	2	25	MnO ₂ , Co ₃ O ₄	40.25	69	11	2
PAM	5	25	MnO ₂ , GO	105	63	23.3	3
PVA	3	25	Co ₃ O ₄	62.6	63	48	4
	2	25	EaCa based	160	65	105	
PAA	5	25	reco based	100	~60	80	5
	2	-20	cataryst	80.5	57	5	
DAMDS		25		73.9	64		
PAMP5-	1	0	Co ₃ O ₄	N/A	~60	24	6
K/WIC		-20		54.2	~55		
DAM VI	2	20	Dt/Duo	43	71	75	7
PAM-KI	2	-40	Pt/KuO ₂	10	59	40	
DANe starsh	1	25	Dt/Duo	67.5	68	28.7	0
PAINa-starch	1	-20	Pt/KuO ₂	30.7	~53	44.1	0
DAA	2	25	FeCo based	128.8	65.9	92	0
PAA	2	-30	catalyst	63.6	60.4	92	9
PANa	2	25	Pt/RuO ₂	88	65.5	160	10
PANa- cellulose	5	25	Fe based	108.6	60	110	11
PVA-GG	2	25	Pt/IrO ₂	50	~60	10	12
PVA	1	25	Co ₃ O ₄	N/A	~38	70	13
PVA	1	25	Co ₃ O ₄	16	~39	40	14
PVA-PAA- GO-KI	2	25	Pt/C+Co ₃ O ₄	78.6	73	200	15
Aqueous 6 M KOH+3 M KI+0.2 M Zn(Ac)2	5	25	Pt/C	148.8	76.5	80	16
PEVA	2	25	Co ₃ O ₄	N/A	~60	230	17
PAM-SA-KI	1	25	PtC/RuO ₂	132	80	110	18

Table S7. Comparison of ZABs using GPEs reported in this work and in the literature

Abbreviations: PAMPS-K/MC: poly(2-acrylamido-2-methylpropanesulfonic acid potassium salt) with methyl cellulose PANa-starch: sodium polyacrylate-starch GG: guar hydroxypropyltrimonium chloride GO: graphene oxide SA: sodium alginate PEVA: poly(ethylene vinyl acetate)

Table S8. Summary of rate test battery efficiencies and power densities for ZABs using GPE-KOH and GPE-KOH-KI under different conditions

GPE-KOH								
Temperature (°C)	2 mA cm ⁻²	5 mA cm ⁻²	10 mA cm ⁻²	20 mA cm ⁻²	Peak power density (mW cm ⁻²)			
21	68	67	63	59	127			
-3	64	60	54	45	38			
-28	58	51	43	27	17			
-41	55	49	41	Failed	11			
		GPE-K	OH-KI					
Temperature (°C)	2 mA cm ⁻²	5 mA cm ⁻²	10 mA cm ⁻²	20 mA cm ⁻²	Peak power density (mW cm ⁻²)			
21	80	77	73	67	98			
-3	76	72	68	61	27			
-28	68	63	54	31	22			
-41	61	50	37	Failed	11			

GPE-KOH								
	2 mA	cm ⁻²	5 mA	. cm ⁻²	10 mA cm ⁻²			
Temperature	Initial	Final	Initial	Final	Initial	Final		
(°C)	Efficiency	Efficiency	Efficiency	Efficiency	Efficiency	Efficiency		
	(%)	(%)	(%)	(%)	(%)	(%)		
21	68	60	64	57	63	53		
-3	63	59	59	53	59	52		
-28	58	54	50	43	50	41		
-41	46	39	42	32	Failed	Failed		
		(GPE-KOH-KI					
	2 mA	cm ⁻²	5 mA	cm ⁻²	10 mA cm ⁻²			
Temperature	Initial	Final	Initial	Final	Initial	Final		
(°C)	Efficiency	Efficiency	Efficiency	Efficiency	Efficiency	Efficiency		
	(%)	(%)	(%)	(%)	(%)	(%)		
21	77	73	74	66	71	52		
-3	73	65	71	57	65	45		
-28	65	61	60	52	55	Failed		
-41	61	53	52	43	Failed	Failed		

Table S9. Summary of cyclability performance of ZABs using GPE-KOH and GPE-KOH-KI under different conditions

Table S10. Ionic mobility of selected ions in water

Ion	Mobility (10 ⁻⁸ m ² s ⁻¹ V ⁻¹)	Reference
K ⁺	7.62	19
OH-	20.64	19
I-	6.23±0.04	20

References

- R. Chen, X. Xu, S. Peng, J. Chen, D. Yu, C. Xiao, Y. Li, Y. Chen, X. Hu, M. Liu, H. Yang, I. Wyman and X. Wu, *ACS Sustain. Chem. Eng.*, 2020, 8, 11501–11511.
- 2 G. Zhang, X. Cai, C. Li, J. Yao, Z. Tian, F. Zhang, Y. Liu, W. Liu and X. Zhang, *Int. J. Biol. Macromol.*, 2022, **221**, 446–455.
- 3 H. Miao, B. Chen, S. Li, X. Wu, Q. Wang, C. Zhang, Z. Sun and H. Li, *J. Power Sources*, 2020, **450**, 227653.
- 4 X. Fan, J. Liu, Z. Song, X. Han, Y. Deng, C. Zhong and W. Hu, *Nano Energy*, 2019, 56, 454–462.
- 5 Z. Pei, Z. Yuan, C. Wang, S. Zhao, J. Fei, L. Wei, J. Chen, C. Wang, R. Qi, Z. Liu and Y. Chen, *Angew. Chemie Int. Ed.*, 2020, **59**, 4793–4799.
- 6 N. Sun, F. Lu, Y. Yu, L. Su, X. Gao and L. Zheng, ACS Appl. Mater. Interfaces, 2020, 12, 11778–11788.
- 7 Y. Zhang, H. Qin, M. Alfred, H. Ke, Y. Cai, Q. Wang, F. Huang, B. Liu, P. Lv and Q. Wei, *Energy Storage Mater.*, 2021, **42**, 88–96.
- 8 Y. Zhang, Y. Chen, M. Alfred, F. Huang, S. Liao, D. Chen, D. Li and Q. Wei, *Compos. Part B Eng.*, 2021, 224, 109228.
- 9 Z. Pei, L. Ding, C. Wang, Q. Meng, Z. Yuan, Z. Zhou, S. Zhao and Y. Chen, *Energy Environ*. *Sci.*, 2021, **14**, 4926–4935.
- 10 Y. Huang, Z. Li, Z. Pei, Z. Liu, H. Li, M. Zhu, J. Fan, Q. Dai, M. Zhang, L. Dai and C. Zhi, *Adv. Energy Mater.*, 2018, **8**, 1802288.
- 11 L. Ma, S. Chen, D. Wang, Q. Yang, F. Mo, G. Liang, N. Li, H. Zhang, J. A. Zapien and C. Zhi, Adv. Energy Mater., 2019, 9, 1803046.
- 12 M. Wang, N. Xu, J. Fu, Y. Liu and J. Qiao, J. Mater. Chem. A, 2019, 7, 11257–11264.
- 13 Y. Li, X. Fan, X. Liu, S. Qu, J. Liu, J. Ding, X. Han, Y. Deng, W. Hu and C. Zhong, *J. Mater. Chem. A*, 2019, **7**, 25449–25457.
- 14 C. Lin, S. S. Shinde, X. Li, D.-H. Kim, N. Li, Y. Sun, X. Song, H. Zhang, C. H. Lee, S. U. Lee and J.-H. Lee, *ChemSusChem*, 2018, **11**, 3215–3224.
- Z. Song, J. Ding, B. Liu, X. Liu, X. Han, Y. Deng, W. Hu and C. Zhong, *Adv. Mater.*, 2020, 32, 1908127.
- 16 S. Zhao, T. Liu, Y. Dai, J. Wang, Y. Wang, Z. Guo, J. Yu, I. T. Bello and M. Ni, *Appl. Catal. B Environ.*, 2023, **320**, 121992.
- 17 Z. Chen, X. Yang, W. Li, X. Liang, J. Guo, H. Li, Y. He and Y. Kim, *Small*, 2021, **17**, 2103048.
- 18 Q. Liu, C. Xia, C. He, W. Guo, Z. P. Wu, Z. Li, Q. Zhao and B. Y. Xia, *Angew. Chemie Int. Ed.*, 2022, **134**, e202210567.

- 19 J. R. Varcoe, P. Atanassov, D. R. Dekel, A. M. Herring, M. A. Hickner, P. A. Kohl, A. R. Kucernak, W. E. Mustain, K. Nijmeijer, K. Scott, T. Xu and L. Zhuang, *Energy Environ. Sci.*, 2014, 7, 3135–3191.
- 20 S. Koneshan, J. C. Rasaiah, R. M. Lynden-Bell and S. H. Lee, *J. Phys. Chem. B*, 1998, **102**, 4193–4204.