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Experimental Section

1. Preparation of Basic Electrolyte and Zn-Ce Electrolyte

The basic electrolyte consists of 2 M ZnSO4 and 0.1 M MnSO4. The Zn-Ce electrolyte 

consists of the basic electrolyte and Ce(SO4)2 additive, and the optimal amount of the Ce(SO4)2 

is 0.5 wt%. The Ce(SO4)2 is added into the basic electrolyte directly and then the mixed solution 

was stirring for 6 h.

2. Preparation of MnO2

The MnO2 electrode was fabricated by a hydrothermal reaction method. Briefly, 0.2 M 

KMnO4 (15 mL) and 0.08 M MnSO4 (15 mL) were mixed under continuous stirring for 30 min 

at room temperature. The mixture was loaded into a 50 mL Teflon-lined autoclave and 

maintained at 160 °C for 12 h. The obtained product was centrifuged, washed thoroughly using 

water and absolute ethyl alcohol, and dried at 80 ℃ for 10 h. The mass loading of MnO2 cathode 

in Zn/MnO2 battery with the Zn-Ce electrolyte is 1.5 mg (1.05 mg MnO2 : 0.3 mg carbon black 

: 0.15 mg PVDF) and the mass loading of MnO2 cathode in Zn/MnO2 battery with the basic 

electrolyte is 1.6 mg (1.134 mg MnO2 : 0.324 mg carbon black : 0.162 mg PVDF) at 1.0 A·g-1. 

The mass loading of MnO2 cathode in Zn/MnO2 battery is 1.44 mg (1.008 mg MnO2 : 0.288 

mg carbon black : 0.144 mg PVDF) at 0.5 A·g-1.

3. Materials Characterization

The cathode material, Zn anode and the electrolyte were recorded by the X-ray diffraction 

(XRD) in the 2θ range of 5°-80° (Rigaku Mini Flex 600 diffractometer, Cu Kα radiation, λ = 

1.5418, step size of 0.02° s−1). A FESEM (FEI Nova NanoSEM 230, 10 kV) field emission 

scanning electron microscope was used to analyze the morphologies and microstructures of 

samples. Raman spectra were conducted on a spectrophotometer (DXR, Thermo-Fisher 

Scientific) with a wavelength of 532 nm. X-ray photoelectron spectroscopy (XPS) was recorded 

on an ESCALAB 250 Xi X-ray photoelectron spectrometer (Thermo Fisher), and the samples 
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were retrieved for XPS characterization after thorough washing with ethyl alcohol and drying 

in vacuo at room temperature. The transition-metal concentration on the cathodes was 

determined by total reflection X-ray fluorescence spectroscopy (TXRF), employing a LAB 

CENTER XRF-1800.

4. Electrochemical Measurement

The synthesized MnO2 powder (70 wt%) was utilized for constructing the cathodes by 

coating the slurry mixed with acetylene black (20 wt%) and polyvinylidene fluoride (10 wt%) 

onto the stainless-steel wire mesh (SSWM) with the area of 1.13 cm2, followed by a drying 

process at 80 °C for 12 h in a vacuum atmosphere. The Zn/MnO2 batteries consisted of MnO2 

cathode, Zn anode, glass fiber separation, and basic/Zn-Ce electrolyte, which were encapsulated 

in CR2025 coin cells for electrochemical measurements. The electrochemical performance 

measurements were examined by a multichannel battery test system (LAND CT2001A, China). 

The electrochemical performances at high/low temperature were tested via a high/low 

temperature test box (LAND GT2001B, China). The CV and EIS measurements were carried 

out on an electrochemical workstation (CHI660E, China).
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Figures and Tables

Figure S1 Inductively coupled plasma optical emission spectrometry (ICP-OES) results of the 

Mn content for the basic/Zn-Ce electrolyte at various charge/discharge states.
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Figure S2 The high-resolution XPS of Mn 2p spectra of the MnO2 cathode in Zn-Ce electrolyte 

at different charge/discharge stages.
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Figure S3 XRD patterns of the MnO2 cathodes in the basic electrolyte and Zn-Ce electrolyte 

after 10 cycles and at the stage of discharging to 0.8 V.
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Figure S4 XRF patterns of the MnO2 cathodes in the basic electrolyte and Zn-Ce electrolyte at 

1st cycle and 50th cycle.
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Figure S5 Scanning electron microscopy (SEM) images of MnO2 cathodes in the basic 

electrolyte and the Zn-Ce electrolyte at the state of discharging to 0.8 V (left) and charging to 

1.8 V (right).
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Figure S6 The corresponding elemental mapping images and EDS of the MnO2 cathode in 

the basic electrolyte at the state of discharging to 0.8 V.
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Figure S7 The corresponding elemental mapping images and EDS of the MnO2 cathode in the 

Zn-Ce electrolyte at the state of discharging to 0.8 V.
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Figure S8 The pH variation of the basic electrolyte and the Zn-Ce electrolyte in the Zn/MnO2 

batteries.
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Figure S9 The EIS curves of Zn/MnO2 batteries with the basic electrolyte at different 

temperatures.
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Figure S10 The EIS curves of Zn/Zn batteries with (a) the basic electrolyte and (b) the Zn-Ce 

electrolyte at different temperatures. (c) The EIS comparison of Zn/Zn batteries with the basic 

electrolyte and the Zn-Ce electrolyte at 20℃. (d) Arrhenius curves of activation energies (Ea) 

of Zn/Zn batteries with the basic electrolyte and the Zn-Ce electrolyte.
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Figure S11 The EIS curves of Zn/MnO2 batteries with the basic electrolyte and the Zn-Ce 

electrolyte at a) initial stage, b)10th cycle and c) 50th cycle.
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Figure S12 The EIS curves of Zn/MnO2 batteries with (a) basic electrolyte and (b) Zn-Ce 

electrolyte at different standing state.
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Figure S13 The impendence-time curves of Zn/MnO2 batteries with the basic electrolyte and 

Zn-Ce electrolyte at 1000 Hz.
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Figure S14 Cycling performances of the Zn/MnO2 batteries with the basic electrolyte and the 

Zn-Ce electrolyte in a) 0, b) 15, c) 35 and d) 55℃ at 1 A·g-1.
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Table S1 Data of R1 and R2 for Zn/MnO2 batteries at different temperatures.

Temperature (℃) Sample R1 (Ω) R2 (Ω)

Basic electrolyte 2.668 2747
0

Zn-Ce electrolyte 1.753 1373

Basic electrolyte 2.333 1510
10

Zn-Ce electrolyte 1.403 753.6

Basic electrolyte 1.983 1157
20

Zn-Ce electrolyte 0.551 463.5

Basic electrolyte 1.683 608.6
30

Zn-Ce electrolyte 1.608 217.0

Basic electrolyte 0.971 403.2
40

Zn-Ce electrolyte 2.105 154.8
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Table S2 Data of Rct and RS for Zn/Zn batteries at different temperatures.

Temperature (℃) Sample Rs (Ω) Rct (Ω)

Basic electrolyte 1.723 6729
0

Zn-Ce electrolyte 2.12 5431

Basic electrolyte 1.546 3052
10

Zn-Ce electrolyte 1.659 2670

Basic electrolyte 1.228 1193
20

Zn-Ce electrolyte 1.399 1039

Basic electrolyte 1.082 671.2
30

Zn-Ce electrolyte 1.381 596.3

Basic electrolyte 0.971 403.2
40

Zn-Ce electrolyte 1.282 351.3
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Table S3 The electrochemical performances comparison of Zn/MnO2 battery based on Zn-Ce 

electrolyte with other reported Zn/MnO2 batteries based on the different optimization methods.

Cathode Electrolyte

Current 

density

(A·g-1)

Cycle 

number

Capacity 

retention 

(%)

Ref.

MnO2

2 M ZnSO4+

0.1 M MnSO4+

0.5 wt% Ce(SO4)2

1.0 1000 97.4
This 

work

MnO2

Solid-state hydrogel 

electrolyte with three 

layers (ABC-H)

1.0 1000 93.6 1

MnO2@PEDOT
poly(vinyl alcohol) 

(PVA)
1.1 300 93.7 2

δ-MnO2 NDs
2 M ZnSO4+

0.1 M MnSO4
1.0 1000 86.2 3

MnO2

2 M ZnSO4+

0.1 M MnSO4+

30 wt% palygorskite

0.5 1000 89.0 4

MnO2

(poly(ethylene glycol) 

diglycidylether +

zinc 

trifluoromethanesulfonat

e

0.5 300 85.0 5

K+-intercalated 

δ-MnO2
2 M ZnSO4 1.8 100 96.9 6

MnO2 nanorods 1 M ZnSO4 0.2 200 75.0 7
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Supplementary Discussion

Conversion of Mn2+/MnOOH reaction:

Mn2+ + Ce4+ + 2H2O → MnOOH + Ce3+ + 3H+

ΔG0 = ΔfG(MnOOH) + ΔfG(Ce3+) + 3ΔfG(H+) - [ΔfG(Mn2+) + ΔfG(Ce4+) + 2 ΔfG(H2O) = -

822.6 - 96500*1.72/1000-( -228 -237.2*2) = -286.18 KJ mol-1

Δ𝐺 = Δ𝐺0 ‒ 𝑅𝑇𝑙𝑛𝑄 = 0

𝑅𝑇𝑙𝑛𝑄 = 𝑅𝑇𝑙𝑛𝑙𝑛[
𝑐(𝐶𝑒3 + ) ∗ 𝑐3(𝐻 + )

𝑐(𝐶𝑒4 + ) ∗ 𝑐(𝑀𝑛2 + )
]

𝑙𝑛[
𝑐(𝐶𝑒3 + ) ∗ 𝑐3(𝐻 + )

𝑐(𝐶𝑒4 + ) ∗ 𝑐(𝑀𝑛2 + )
] = 0.88

During the discharging, the lower [H+] and higher [Mn2+] make the tendency of the 

conversion to MnOOH when the .
[ 𝑐(𝐶𝑒3 + ) ∗ 𝑐3(𝐻 + )
𝑐(𝐶𝑒4 + ) ∗ 𝑐(𝑀𝑛2 + )] < 0.88, Δ𝐺 < 0

Note:

① ΔfG(MnOOH) is roughly assumed by the data and Hess's law 8.

② R: ideal gas constant (8.31 J K-1 mol-1); T: temperature (25℃); Q: reaction entropy
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