## Supporting Information

## Aluminum Dendrites Suppression by Graphite Coated Anode of Al-Metal Battery

Shiman He†<sup>a,b</sup>, Jie Wang†<sup>a</sup>, Xu Zhang<sup>a,\*</sup>, Weiqin Chu<sup>a</sup>, Shu Zhao<sup>a</sup>, Daping He<sup>c</sup>, Min Zhu<sup>b,\*</sup> and Haijun Yu<sup>a,\*</sup>

<sup>a</sup>Institute of Advanced Battery Materials and Devices, Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China

<sup>b</sup>Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China

<sup>c</sup>Hubei Engineering Research Center of RF-Microwave Technology and Application, Wuhan University of Technology, Wuhan, 430070, China

\* Corresponding authors.

E-mail: <u>hj-yu@bjut.edu.cn (</u>H. Yu), <u>memzhu@scut.edu.cn (</u>M. Zhu), <u>zhangx@bjut.edu.cn (</u>X. Zhang)

<sup>†</sup>These authors contributed equally to this work.

| Electrode                                        | Cell type  | Overpotential<br>(mV) | Current<br>density<br>(mA cm <sup>-2</sup> ) | Cycling        | CEs                                                                  | Ref          |
|--------------------------------------------------|------------|-----------------------|----------------------------------------------|----------------|----------------------------------------------------------------------|--------------|
| 3D Al anode                                      | Symmetric  | 170                   | 0.5                                          | 450<br>hours   | /                                                                    | 1            |
| Biomimetic<br>scaffold                           | Asymmetric | 81                    | 1                                            | 1400<br>cycles | ~99.27 (45 <sup>th</sup> cycle)                                      | 2            |
| 3D thin film                                     | Symmetric  | 54                    | 0.3                                          | /              | /                                                                    | 3            |
| Pyrolytic<br>carbon<br>nanotube forest           | Symmetric  | ~50                   | 0.5                                          | 1000<br>hours  | /                                                                    | 4            |
| Porous Al                                        | Symmetric  | ~180                  | 3                                            | 100<br>hours   | /                                                                    | 5            |
| Nanoporous<br>carbon                             | Symmetric  | ~65                   | 1                                            | 1000<br>hours  | /                                                                    | 6            |
| Au nanosheets                                    | Asymmetric | ~100                  | 1                                            | 500<br>cycles  | ~96% (10 <sup>th</sup> cycle);<br>~99.2% (300 <sup>th</sup> cycle)   | 7            |
| N doped<br>carbon rod<br>array                   | Symmetric  | ~50                   | 0.5                                          | 240<br>hours   | 1                                                                    | 8            |
| Pt ultrathin<br>aluminophilic<br>interface layer | Asymmetric | 109.4                 | 1                                            | 550<br>hours   | ~98.6% (10 <sup>th</sup> cycle);<br>~99.6% (100 <sup>th</sup> cycle) | 9            |
| Graphite<br>coating Al                           | Symmetric  | 43                    | 0.4                                          | 400<br>hours   | /                                                                    | This<br>work |
|                                                  | Asymmetric | 35                    | 0.4                                          | 250<br>cycles  | ~95.7% (10 <sup>th</sup> cycle)<br>~99.4% (200 <sup>th</sup> cycle)  |              |

**Table S1.** The electrochemical performances of the state-of-the-art Al anodes and Al-g anodein ILs based electrolyte.



**Figure S1.** EDS line scan of Al-g. (a) The cross viewed SEM image. (b and c) Intensities of Al (b) and C (c) along the arrow in (a).



**Figure S2.** (a and b) Electrochemical cycling performances of symmetric Al||Al and Al-g||Alg cells at (a) 0.8 and (b) 1.2 mA cm cm<sup>-2</sup>. The Al plating/stripping processes maintained at 1 h. (c) Magnified profile of (a). (d) Magnified profile of (b).



Figure S3. (a) Schematic illustration of Al-g||Al configuration and (b) the corresponding voltage-time profile.



**Figure S4.** The voltage-time profile of Al||Al-g cell with negative bias for 1 h and positive bias for 2 h in the first cycle.



**Figure S5.** (a) High resolution TEM image, and (b) STEM image of the cycled Al-g. (c-f) EDS mapping of the cycled Al-g.



Figure S6. EIS of the symmetric cell with bare Al and Al-g electrodes.



**Figure S7.** SEM images of the Al-g electrodes after (a) plating for 0.5 h, (b) plating for 1.0 h, (c) plating for 1.0 h and stripping for 0.5 h, and (d) plating for 1.0 h and stripping for 1.0 h.



**Figure S8.** Al plating/stripping voltage profiles from (a) the  $63^{rd}$  and (b) the  $10^{th}$  cycle shown for the Al-g anode and bare Al anode at 0.4 mA cm<sup>-2</sup>.



**Figure S9.** (a) CEs comparison of Al plating on Mo mesh at 0.8 mA cm<sup>-2</sup>. The amount of plated Al in each cycle is 0.8 mAh cm<sup>-2</sup>. (b and c) Voltage profiles of the Al plating/stripping process of cells with (b) Al-g anode and (c) Al anode at 0.8 mA cm<sup>-2</sup>.



**Figure S10.** (a) CEs comparison of Al plating on Mo mesh at 1.2 mA cm<sup>-2</sup>. The amount of plated Al in each cycle is 1.2 mAh cm<sup>-2</sup>. (b and c) Voltage profiles of the Al plating/stripping process of cells with (b) Al-g anode and (c) Al anode at 1.2 mA cm<sup>-2</sup>.



**Figure S11.** Low-magnification SEM images of (a) bare Al and (b) Al-g electrode after cycling in the corresponding symmetric cells.



**Figure S12.** SEM images and corresponding EDS maps of cycled (a-c) bare Al and (d-f) Al-g in the corresponding symmetric cells.



**Figure S13.** (a) XRD patterns of Al-g electrode before and after cycling. (b) HRTEM image of the Al-g electrode after cycling in symmetric cell.



Figure S14. (a) XRD pattern and (b) Raman spectrum of the graphite cathode materials.



**Figure S15.** (a and c) Low-magnification and (b and d) high-magnification SEM images of (a and b) bare Al and (c and d) Al-g electrode after cycling in the corresponding Al||graphite and Al-g||graphite batteries.



**Figure S16.** SEM images and corresponding EDS maps of cycled (a-c) bare Al and (d-f) Al-g from Al||graphite and Al-g||graphite dual-ion batteries, respectively.

## References

- 1 J. Li, K. S. Hui, S. Ji, C. Zha, C. Yuan, S. Wu, F. Bin, X. Fan, F. Chen, Z. Shao and K. N. Hui, *Carbon Energy*, 2022, **4**, 155-169.
- 2 Z. Zhang, X. Yang, P. Li, Y. Wang, X. Zhao, J. Safaei, H. Tian, D. Zhou, B. Li, F. Kang and G. Wang, *Adv. Mater.*, 2022, **34**, e2206970.
- 3 N. Lindahl, J. Bitenc, R. Dominko and P. Johansson, *Adv. Funct. Mater.*, 2020, **30**, 2004573.
- 4 S. Ha, J. C. Hyun, J. H. Kwak, H.-D. Lim, B. S. Youn, S. Cho, H.-J. Jin, H.-K. Lim, S. M. Lee and Y. S. Yun, *Chem. Eng. J.*, 2022, **437**, 135416.
- 5 Y. Long, H. Li, M. Ye, Z. Chen, Z. Wang, Y. Tao, Z. Weng, S. Qiao and Q.-H. Yang, *Energy Storage Mater.*, 2021, **34**, 194-202.
- 6 J. Yoon, S. Moon, S. Ha, H.-K. Lim, H.-J. Jin and Y. S. Yun, *J. Energy Chem.*, 2022, 74, 121-127.
- 7 Q. Zhao, J. Zheng, Y. Deng and L. Archer, J. Mater. Chem. A, 2020, 8, 23231-23238.
- 8 H. Jiao, S. Jiao, W.-L. Song, X. Xiao, D. She, N. Li, H. Chen, J. Tu, M. Wang and D. Fang, *Nano Res.*, 2021, 14, 646-653.
- 9 Y. Meng, M. Wang, K. Li, Z. Zhu, Z. Liu, T. Jiang, X. Zheng, K. Zhang, W. Wang, Q. Peng, Z. Xie, Y. Wang and W. Chen, *Nano Lett.*, 2023, 23, 2295-2303.