# **Electronic Supplementary Information**

# Towards Durable Li-Hybrid Flow Battery: Composite Membrane Development, Cell Performance, and Perspective

Nikita Akhmetov<sup>a, \*</sup>, Zainab Waris<sup>a</sup>, Sergey Ryazantsev<sup>a,b</sup>, Svetlana Lipovskikh<sup>a</sup>, Nataliya Gvozdik<sup>a</sup>, Mariam Pogosova<sup>a</sup>, Keith Stevenson<sup>c</sup>

 <sup>a</sup> Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
 <sup>b</sup> Department of Materials Science, Shenzhen MSU-BIT University, 517182 Shenzhen, China

<sup>c</sup> Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia \*Corresponding author: nikita.akhmetov@skoltech.ru

## Table of Contents

| Section S1. Additional experimental details (Fig. S1-S2)                      | 2  |
|-------------------------------------------------------------------------------|----|
| Section S2. Optimization of membranes' permeability (Fig. S3-S4, Table S1-S2) | 6  |
| Section S3. Li-TEMPO cell prototyping and testing (Fig. S5-S11; Table S3-S8)  | 9  |
| References                                                                    | 20 |

### Section S1. Additional experimental details (*Fig. S1-S2*)

#### LATP Filler Preparation

Li<sub>2</sub>CO<sub>3</sub> (≥99%, Sigma-Aldrich, Chile), NH<sub>4</sub>H<sub>2</sub>PO<sub>4</sub> (≥98%, Alfa Aesar, Japan), Al<sub>2</sub>O<sub>3</sub> (decomposed from Al(NO<sub>3</sub>)<sub>3</sub>·9H<sub>2</sub>O, ≥97%, RusChem, Russia), and TiO<sub>2</sub> (≥99.5%, Sigma-Aldrich, Germany) were stoichiometrically mixed (Li<sub>2</sub>CO<sub>3</sub> was taken with the 5% excess — the losses are expected at high temperatures), milled manually in agate mortar with addition of iso-propanol, and calcined at 750 °C for 3 h (14 h ramp) in a muffle furnace (Nabertherm L5/12/P330, Germany) in an alumina crucible with the application of the burnable separator.<sup>1</sup> Next, a sintered ceramic chunk was manually milled with iso-propanol, mixed with 5 wt.% polyethylene glycol (PEO, M<sub>w</sub> ~1500, MO, USA) added as an iso-propanol solution during the subsequent additional milling procedure. The powder was then, pressed (Carver 4350.L, IN, USA) into 0.5-g pellets, which were placed in an alumina crucible and annealed at 850 °C for 3 h (14 h ramp). Final pellets were air-quenched and thrown on the aluminum foil to complete and preserve the NASICON phase formation. LATP ceramics were further applied for the composite fabrication immediately or placed inside the Ar glove box and sealed in a pouch for delayed use. The further membrane fabrication initiates with the LATP filler preparation: manual grinding of an as-synthesized or just unsealed 0.5-g ceramic pellet in the agate mortar with the following intense milling in the high-energy shaker (SPEX 8000, NJ, USA) for 1.5 h.

#### LATP Structure Refinement

We collected the membrane patterns up to 80 degrees: these samples exhibit stronger intensity fade at higher angles and a wider range was considered unnecessary. The shortened range impacted data accuracy, which was thoroughly represented and taken into account for further consideration and comparative analysis.

The LeBail refinement settings — zero shift and asymmetry factors — were established by the registration, profile and structural analysis of  $Al_2O_3$  NIST 676a standard as described in Ref.<sup>2</sup> The LeBail refinement settings were as follows: background — manual in combination with the Chebyshev polynomial with 5 variables; unit cell dimensions *a* and *c*; profile — Pseudo-Voigt peak-shape function with *GW*, *LY*, anisotropic strain broadening — tensor approach accompanied by a Marquart technique mode with 0.001 Fudge factor; zero-shift (values of the alumina standard were input and fixed); vertical shift — *Sycos*; asymmetry — by divergence with HpS/L (values of the alumina NIST standard were input and fixed); Roughness — *rough1* by Pitschke, Hermann, and Matter approach. The structure refinement parameters were as follows: initial atomic positions of Al, Ti, P, and O were set in accordance with Ref.<sup>3</sup>; Al and Ti shared a joint position; Li positions were fixed); thermal displacement parameters — U, harmonic anisotropic approximation for Al and Ti, isotropic approximation for P, O, and Li (fixed for the latter one on the 0.01 value). Taking into account the XRD limitations related to the low Al concentration, similar Al<sup>3+</sup> and Ti<sup>4+</sup> electronic density, and low Li<sup>+</sup> electronic density, we kept the ionic occupancies fixed for all elements. The vertical shift correction *Sycos* was involved in the general refinement to take the sample preparation features into account: the thin layer of powder or a composite membrane sample were placed on the sample holder's flat side with no strict height control provided. The PVdF phase observed in LATP+PVdF samples was not included into refinement as a separate phase and was later assigned due to the peak positions. All refined structures were submitted in The Cambridge Crystallographic Data Centre (CCDC) database in .cif form and can be found in Fig. S7-S9, Section S3.

#### Membranes Fabrication



Fig. S1. Fabrication routine for LATP+PVdF composite membranes.

#### Membranes' Permeability

The two-compartment custom-made diffusion cell (Fig. S2) was equipped with the working Pt electrode (1.6-mm diameter), 3-mm glassy-carbon counter electrode, and reference electrode composed of a 0.5-mm Ag wire. The half-cell with the immersed electrodes was filled with only supporting electrolyte (SE), while another half-cell contained 0.5 M TEMPO in the same SE. The studied membrane was placed between the compartments with the 0.785 cm<sup>2</sup> area. For convenience, 1.0 M LiClO<sub>4</sub> in PC was used as SE in all permeability tests. Cyclic voltammetry (CV) measurements were carried out in the 0.0 - 0.8 V vs. Fc/Fc<sup>+</sup> potential range and 0.05 V s<sup>-1</sup> scan rate at RT. The rates of TEMPO diffusion from the right half-cell to the left (permeability coefficients) were calculated based on the growth of anodic peak current in time via the second Fick law adopted to the cylindric cell geometry (Eq. S1):

$$V\frac{dC_l(t)}{dt} = \frac{AP}{L}(C_r(t) - C_l(t))$$
(S1)

where V represents the volume of the SE in the left half-cell;  $C_l(t)$  and  $C_r(t)$  are the TEMPO concentrations in the left and right half-cells in the particular moment (t), respectively; A and L are the membrane's active area and thickness, respectively.



Fig. S2. Scheme of the diffusion electrochemical cell for TEMPO permeability measurements; CE, RE, and WE are counter, reference, and working electrodes, respectively.

The growth of a peak current  $(i_p)$  was recalculated to the concentrations according to the Randles–Sevcik equation at 25 °C (Eq. S2):

$$i_p = 2.69 \cdot 10^5 n^{\frac{3}{2}} A D^{\frac{1}{2}} v^{\frac{1}{2}} C_l \tag{S2}$$

where *n* represents a number of electrons involved in the redox reaction; *A* is electrode area; *D* is the diffusion coefficient; v is the CV scan rate;  $C_l$  is the concentration of the analyzed redox active species (TEMPO).

To avoid unnecessary diffusion coefficients determination, we preliminary calibrated the peak current using series of TEMPO solutions with known concentrations. So, Eq. S2 was simplified to S3:

$$i_p = KC_l \tag{S3}$$

where K is the calibration factor, constant at the certain electrolyte, cell configuration and scan rate.

#### Galvanostatic Cycling

The theoretical capacity ( $Q_{theor}$ ), experimental charge/discharge capacity ( $Q_{charge/discharge}$ ), state-of-charge (SoC (%)), and coulombic efficiency (CE), of the Li-TEMPO HFB cell were calculated by Eq. S4-S7, respectively:

$$Q_{theor} \left(\frac{Ah}{L}\right) = \frac{nC_i F}{3600} \tag{S4}$$

$$Q_{charge/discharge}\left(\frac{Ah}{L}\right) = \frac{\int I_{charge/discharge}dt}{V}$$
 (S5)

$$SoC(\%) = \frac{Q_{discharge}}{Q_{theor}} \cdot 100\%$$
(S6)

$$CE = \frac{Q_{charge}}{Q_{discharge}} \cdot 100\% \tag{S7}$$

where *n* represents the number of electrons involved in the redox reaction; *C* is the molar concentration of the redox active species; *F* is the Faraday's constant;  $I_{charge/discharge}$  is the current in a certain time frame; *V* is the volume of the catholyte in the cathode cell part.

Section S2. Optimization of membranes' permeability (Fig. S3-S4, Table S1-S2)



Fig. S3. Morphology and microstructure of the LATP+PVdF composite membrane from the previous study <sup>4</sup>: (a) SEM microphotograph collected in the CBS regime; (b) EDX map of the same region for **carbon**; (c) AFM microphotograph. (d) Microstructure of the pure PVdF membrane fabricated following the previous routine.<sup>4</sup>



Fig. S4. Cross-section SEM images of PVdF membranes fabricated with  $T_{\text{mix}}$  of 25, 50, 90, and 130 °C;  $T_{\text{sub}} = 150$  °C;  $T_{\text{dry}} = 90$  °C.

| Porosity, %                           |                                                                                                                                           |  |  |  |  |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| <u>Set P.2</u> ( $T_{sub}$ variation) |                                                                                                                                           |  |  |  |  |
| $27\pm7$                              |                                                                                                                                           |  |  |  |  |
| $10\pm9$                              |                                                                                                                                           |  |  |  |  |
| $10\pm9$                              |                                                                                                                                           |  |  |  |  |
| variation)                            |                                                                                                                                           |  |  |  |  |
| $25\pm7$                              |                                                                                                                                           |  |  |  |  |
| $19\pm 8$                             |                                                                                                                                           |  |  |  |  |
| $20\pm 8$                             |                                                                                                                                           |  |  |  |  |
| $25\pm7$                              |                                                                                                                                           |  |  |  |  |
|                                       | Porosity, %<br>variation)<br>$27 \pm 7$<br>$10 \pm 9$<br>$10 \pm 9$<br>variation)<br>$25 \pm 7$<br>$19 \pm 8$<br>$20 \pm 8$<br>$25 \pm 7$ |  |  |  |  |

Table S1. Dry-measured porosity of PVdF polymer membrane samples.

The membranes' porosity ( $\varepsilon$ ) was estimated using the dry method via Eq. S8:

$$\varepsilon = \frac{m_{dry}}{\rho SL} \tag{S8}$$

where  $m_{dry}$  represents membrane's weight (g),  $\rho$  is true density of PVdF (g mL<sup>-1</sup>), and SL — sample's area (cm<sup>2</sup>) and thickness (cm), respectively.

Table S2. Permeability coefficients of <u>Sample A-D</u> — composite membranes fabricated after temperature setting in the stage of filler distribution optimization.

| Notation | Brief description                                                    | Permeability, $10^{-7}$ cm <sup>2</sup> min <sup>-1</sup> |
|----------|----------------------------------------------------------------------|-----------------------------------------------------------|
| Sample A | LATP filler added into DMF-PVdF solution                             | $2.19\pm0.24$                                             |
| Sample B | PVdF powder added into DMF-LATP suspension                           | $2.27\pm0.25$                                             |
| Sample C | DMF-LATP suspension added into DMF-PVdF solution                     | $2.59 \pm 0.29$                                           |
| Sample D | PVdF powder added into <i>ultrasonicated</i> DMF-<br>LATP suspension | $0.86\pm0.09$                                             |



Section S3. Li-TEMPO cell prototyping and testing (Fig. S5-S11; Table S3-S8)

Fig. S5. Cycling performance of Li-TEMPO HFB cell operating with (a) 1.0 M LiClO<sub>4</sub> in PC, SE **I**, (b) 1.0 M LiClO<sub>4</sub> in EC:DEC (1:1 vol.), SE **II**, and (c) 1.0 M LiTFSI in EC:DEC, SE **III**; (d) Nyquist plots obtained for the HFB cell before and after 100 cycles using SE **III**.

| Catholyte redox<br>species<br>Concentration                          | Supporting electrolyte                                                             | Initial<br>capacity,<br>Ah L <sup>-1</sup> | Capacity<br>retention, % /<br>N cycles | Coulombic<br>efficiency, %<br>/ Current,<br>mA cm <sup>-2</sup> | Membrane                    | Anode design                                                                                       | Limitations                                                      | Ref.         |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------|-----------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------|
| 2,2,6,6-Tetra-<br>methylpiperidine-1-<br>oxyl (TEMPO) /<br>1 mM      | 0.75 M LiTFSI in<br>ethylene carbonate<br>+ diethyl carbonate<br>(EC:DEC 1:1 vol.) | 0.025                                      | 68 / 50<br>50 / 100                    | 94 / 0.2                                                        | Composite:<br>LATP+PVdF     | Direct stack of<br>Li and<br>membrane;<br>several SE drops<br>in-between                           | Low TEMPO<br>initial<br>availability;<br>high cell<br>resistance | This<br>work |
| 1-Methoxymethyl<br>ferrocene /<br>100 mM                             | 1 M LiTFSI in 1,2-<br>dimethoxyethane<br>(DME)                                     | -                                          | 30 / 100                               | 91 / 20                                                         | Porous:<br>Daramic          | Graphite felt<br>layer between Li<br>and membrane                                                  | DME<br>volatizes in<br>100 cycles                                | 5            |
| 1,4,5,8-Tetraamino-<br>anthraquinone<br>(Disperse Blue-1) /<br>80 mM | 1 M LiTFSI in<br>dimethyl sulfoxide<br>(DMSO)                                      | 8                                          | 100 / 50                               | 99 / 20                                                         | Ion-exchange:<br>Nafion 115 | _                                                                                                  | Low<br>solubility and<br>affordability<br>of active<br>species   | 6            |
| TEMPO /<br>50 mM                                                     | 1 M LiPF <sub>6</sub> in<br>propylene<br>carbonate (PC)                            | 0.9                                        | 70 / 50                                | 97 / 5                                                          | Porous:<br>Celgard          | Graphite felt<br>layer between Li<br>and membrane;<br>static TEMPO<br>electrolyte in<br>anode part | TEMPO<br>degradation<br>during<br>cycling                        | 7            |

Table S3. Comparison of the reported Li-hybrid flow cells in terms of their electrochemical performance and design architecture.

| 10-Methyl-<br>phenothiazine (MPT) /<br>50 mM | 1 M LiPF <sub>6</sub> in<br>EC:DEC (1:1 vol.)                            | 1                          | 95 / 1000           | 99 / 0.2 | Ceramic:<br>LAGP                                            | Soaked in SE<br>Celgard layer<br>between Li and<br>membrane                                      | Low<br>catholyte<br>volume –<br>4 mL     | 8  |
|----------------------------------------------|--------------------------------------------------------------------------|----------------------------|---------------------|----------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------|----|
| MeO-TEMPO                                    | MeO-TEMPO-<br>LiTFSI (1:1) +<br>17 wt.% H <sub>2</sub> O ionic<br>liquid | 55                         | 84 / 20             | - / 0.2  | Ceramic: LIC-<br>GC (Li ion-<br>conducting<br>glass ceramic | Several SE drops<br>on Li surface                                                                | Low<br>catholyte<br>volume –<br>50 µL    | 9  |
| TEMPO /<br>100 mM                            | 1.0 M LiPF <sub>6</sub> in<br>EC:PC:EMC<br>(4:1:5) + 15 wt.%<br>FEC      | 2.5                        | 99 / 100            | 99 / 5   | Porous:<br>polyethylene-<br>based                           | Electrically<br>stacked Li and<br>graphite felt;<br>static TEMPO<br>electrolyte in<br>anode part | Highly<br>corrosive<br>LiPF <sub>6</sub> | 10 |
| Anthraquinone-based / 250 mM                 | 1 M LiPF <sub>6</sub> in PC                                              | 0.11                       | 70 / 40             | 93 / 0.1 | Porous:<br>Celgard                                          | _                                                                                                | Low cell<br>voltage                      | 11 |
| 1,4-Benzoquinone /<br>10 mM                  | 1 M LiClO4 in γ-<br>butyrolactone<br>(GBL)                               | 0.5 Ah g <sup>-</sup><br>1 | 77 / 25<br>50 / 100 | - / 0.05 | Ceramic: LIC-<br>GC                                         | Glass filter<br>between Li and<br>membrane                                                       | Fast capacity decay                      | 12 |



Fig. S7. The experimental, refined, and differential XRD patterns of the LATP ceramics sample, as well as R-factors, calculated cell (a, c, V) parameters, and intrastructural polyhedra volumes  $([MO_6], [Li(1)O_6M_2])$ . CCDC deposition number: 2243668.

| Positi<br>on | $a_i$ | x         | у         | Z.         | $U_{ m iso}$ | $U_{11}$  | $U_{22}$  | $U_{33}$  | $U_{12}$  | $U_{13}$ | $U_{23}$ |
|--------------|-------|-----------|-----------|------------|--------------|-----------|-----------|-----------|-----------|----------|----------|
| Al           | 0.15  | 0         | 0         | 0.14156(4) | 0.0122(3)    | 0.0130(4) | 0.0130(4) | 0.0105(6) | 0.0065(2) | 0        | 0        |
| Ti           | 0.85  | 0         | 0         | 0.14156(4) | 0.0122(3)    | 0.0130(4) | 0.0130(4) | 0.0105(6) | 0.0065(2) | 0        | 0        |
| Р            | 1     | 0.2886(1) | 0         | 0.25       | 0.0169(3)    |           |           |           |           |          |          |
| 01           | 1     | 0.1817(2) | 0.9915(2) | 0.19000(6) | 0.0142(5)    |           |           |           |           |          |          |
| O2           | 1     | 0.1861(2) | 0.1630(1) | 0.0822(1)  | 0.0089(5)    |           |           |           |           |          |          |
| Lil          | 1     | 0         | 0         | 0          | 0.01         |           |           |           |           |          |          |
| Li2          | 0.05  | 0.073     | 0.34      | 0.091      | 0.01         |           |           |           |           |          |          |

Li2

Table S4. Atomic positions, occupancies  $(a_i)$ , coordinates (x, y, z), and thermal displacement parameters ( $U_{iso}$ ,  $U_{11}$ ,  $U_{22}$ ,  $U_{33}$ ,  $U_{12}$ ,  $U_{13}$ ,  $U_{23}$ ) for the LATP ceramic sample.



Fig. S8. The experimental, refined, and differential PXRD patterns of the LATP+PVdF membrane sample *before* cycling, as well as R-factors, calculated cell parameters (a, c, V), and intrastructural polyhedra volumes ([MO<sub>6</sub>], [Li(1)O<sub>6</sub>M<sub>2</sub>]). The  $\alpha$ -PVdF phase peak positions correspond to those described in Ref.<sup>13</sup> CCDC deposition number: 2243666.

Table S5. Atomic positions, occupancies ( $a_i$ ), coordinates (x, y, z), and thermal displacement parameters ( $U_{iso}$ ,  $U_{11}$ ,  $U_{22}$ ,  $U_{33}$ ,  $U_{12}$ ,  $U_{13}$ ,  $U_{23}$ ) for the **LATP+PVdF membrane** sample *before* cycling

| Position | $a_i$ | x         | у         | z         | $U_{ m iso}$ | $U_{11}$ | $U_{22}$ | $U_{33}$ | $U_{12}$ | $U_{13}$ | $U_{23}$ |
|----------|-------|-----------|-----------|-----------|--------------|----------|----------|----------|----------|----------|----------|
| Al       | 0.15  | 0         | 0         | 0.1417(3) | 0.041(3)     | 0.040(3) | 0.040(3) | 0.044(7) | 0.020(1) | 0        | 0        |
| Ti       | 0.85  | 0         | 0         | 0.1417(3) | 0.041(3)     | 0.040(3) | 0.040(3) | 0.044(7) | 0.020(1) | 0        | 0        |
| Р        | 1     | 0.2921(8) | 0         | 0.25      | 0.050(3)     |          |          |          |          |          |          |
| O2       | 1     | 0.189(1)  | 0.1653(8) | 0.0838(9) | 0.040(4)     |          |          |          |          |          |          |
| 01       | 1     | 0.183(1)  | 0.9812(9) | 0.1888(4) | 0.032(3)     |          |          |          |          |          |          |
| Li1      | 1     | 0         | 0         | 0         | 0.01         |          |          |          |          |          |          |
| Li2      | 0.05  | 0.073     | 0.34      | 0.091     | 0.01         |          |          |          |          |          |          |



Fig. S9. The experimental, refined, and differential PXRD patterns of the LATP+PVdF membrane sample *after* cycling, as well as R-factors, calculated cell parameters (a, c, V), and intrastructural polyhedra volumes ([MO<sub>6</sub>], [Li(1)O<sub>6</sub>M<sub>2</sub>]). The  $\alpha$ -PVdF phase peak positions correspond to those described in Ref.<sup>13</sup> CCDC deposition number: 2243667.

Table S6. Atomic positions, occupancies ( $a_i$ ), coordinates (x, y, z), and thermal displacement parameters ( $U_{iso}$ ,  $U_{11}$ ,  $U_{22}$ ,  $U_{33}$ ,  $U_{12}$ ,  $U_{13}$ ,  $U_{23}$ ) for the **LATP+PVdF membrane** sample *after* cycling

| Position | $a_i$ | x         | у         | z          | $U_{ m iso}$ | $U_{11}$  | $U_{22}$  | $U_{33}$ | $U_{12}$  | $U_{13}$ | $U_{23}$ |
|----------|-------|-----------|-----------|------------|--------------|-----------|-----------|----------|-----------|----------|----------|
| Al       | 0.15  | 0         | 0         | 0.14126(7) | 0.0242(9)    | 0.0264(9) | 0.0264(9) | 0.020(2) | 0.0132(4) | 0        | 0        |
| Ti       | 0.85  | 0         | 0         | 0.14126(7) | 0.0242(9)    | 0.0264(9) | 0.0264(9) | 0.020(2) | 0.0132(4) | 0        | 0        |
| Р        | 1     | 0.2888(2) | 0         | 0.25       | 0.031(1)     |           |           |          |           |          |          |
| 01       | 1     | 0.1829(3) | 0.9893(3) | 0.1885(1)  | 0.029(1)     |           |           |          |           |          |          |
| O2       | 1     | 0.1846(3) | 0.1636(3) | 0.0813(2)  | 0.020(1)     |           |           |          |           |          |          |
| Li1      | 1     | 0         | 0         | 0          | 0.01         |           |           |          |           |          |          |
| Li2      | 0.05  | 0.073     | 0.34      | 0.091      | 0.01         |           |           |          |           |          |          |



Fig. S10. TEM-EDX images of LATP ceramic particles blended in a PVdF matrix within the LATP+PVdF composite membrane before (pristine) and after 100 charge/discharge cycles in Li-TEMPO HFB cell.



Fig. S11. FTIR spectra of the LATP+PVdF membrane after 100 charge/discharge cycles in Li-TEMPO HFB cell.

Table S7. Summary of the composite membrane fabrication conditions varied within the current and our previous studies devoted to the LATP+PVdF development.

| Fabrication parameter                                | Variation range                                                                           | Optimized parameter's value                                                                   | Figure of merit /<br>Final characteristic                                                                  | Ref.         |
|------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------|
| Polymer PVdF membrane                                |                                                                                           |                                                                                               |                                                                                                            |              |
| Solvent:polymer<br>(DMF:PVdF) ratio                  | 8-20 wt.% PVdF in DMF                                                                     | 15 wt.% PVdF                                                                                  | Thickness /<br>15-20 μm                                                                                    | 14           |
| Pretreatment of the casting glass substrate          | A set of washing and treatment approaches                                                 | Washing with acetone $\rightarrow$<br>drying in air flow $\rightarrow$<br>treatment in plasma | Contact angle between substrate and water / ~1 $^{\circ}$                                                  | 14           |
| Components mixing temperature $(T_{mix})$            | 25–130 °C                                                                                 | 25 °C                                                                                         | CV-based evaluation (permeability tests),<br>SEM, FTIR, Raman /<br>diminished globularity and permeability | This<br>work |
| Solution casting (substrate) temperature $(T_{sub})$ | 70–150 °C                                                                                 | 150 °C                                                                                        | SEM, Raman, dry porosity, permeability tests / diminished globularity and permeability                     | This<br>work |
| Sample drying temperature $(T_{dry})$                | 25–130 °C                                                                                 | 90 °C                                                                                         | SEM, dry porosity / mediate porosity                                                                       | This<br>work |
| Drying atmosphere                                    | Temperature ( <i>T</i> ) + dynamic vacuum ( <i>vac</i> ); <i>only T</i> ; <i>only vac</i> | Only T                                                                                        | SEM / smooth, solid, and continuous surface                                                                | 14           |
| LATP ceramic filler                                  |                                                                                           |                                                                                               |                                                                                                            |              |
| Preliminary milling time in a high-energy shaker     | 0–120 min                                                                                 | 90 min                                                                                        | Laser particle size analyzer; SEM / ~1 μm mean particle size                                               | 4            |

# LATP+PVdF composite membrane

| Presence of a supporting<br>lithium salt (LiClO <sub>4</sub> ) in the<br>matrix | With (7.5 wt.%)/without salt:<br>LATP+LiClO4+PVdF,<br>LATP+PVdF                   | LATP+PVdF                                                                | Weight change after static soaking of the<br>membrane in non-aqueous electrolytes /<br>~0%                                                                                        | 14           |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Ceramic:polymer<br>(LATP:PVdF) ratio                                            | 0-60 wt.% LATP in composite                                                       | 45 wt.%                                                                  | EIS, permeability tests / trade-off between IC and permeability: $3.4 \cdot 10^{-4} \text{ S cm}^{-1}$ and $6.6 \cdot 10^{-7} \text{ cm}^2 \text{ min}^{-1}$                      | 4            |
| Solvent for polymer dissolution                                                 | DMF, DMSO, NMP                                                                    | All                                                                      | XRD, FTIR, EIS, permeability tests / close outcomes: IC of $1.0-1.7 \cdot 10^{-4}$ S cm <sup>-1</sup> , permeability of $2.7-3.1 \cdot 10^{-7}$ cm <sup>2</sup> min <sup>-1</sup> | 15           |
| Ceramic filler distribution                                                     | A set of mixing approaches;<br>addition of DMF-LATP<br>suspension sonication step | DMF-LATP<br>sonication $\rightarrow$ adding<br>PVdF $\rightarrow$ mixing | Permeability tests, SEM /<br>IC and permeability of <u>final composite</u> :<br>$1.1 \cdot 10^{-4}$ S cm <sup>-1</sup> and $0.86 \cdot 10^{-7}$ cm <sup>2</sup> min <sup>-1</sup> | This<br>work |
| Other minor variations                                                          | Casting blade speed, solution degassing conditions                                | 15 mm s <sup>-1</sup> ,<br>20 h at 25 °C                                 | Visual membrane's uniformity,<br>optimized fabrication time                                                                                                                       | 14           |

Table S8. Dependence of Li-TEMPO HFB's initial discharge capacity (normalized to theoretical) on TEMPO concentration in the catholyte during first cycles. Catholyte volume (~12 mL) and supporting electrolyte composition (LiTFSI+EC:DEC) are constant.

| Concentration, mM | Initial capacity, % |
|-------------------|---------------------|
| 1                 | 93                  |
| 10                | 12                  |
| 100               | ~1                  |

### References

- 1 M. A. Pogosova, I. V. Krasnikova, A. O. Sanin, S. A. Lipovskikh, A. A. Eliseev, A. V. Sergeev and K. J. Stevenson, *Chemistry of Materials*, 2020, **32**, 3723–3732.
- 2 M. Pogosova, I. Krasnikova, A. Sergeev, A. Zhugayevych and K. Stevenson, *J Power Sources*, DOI:10.1016/j.jpowsour.2019.227367.
- G. J. Redhammer, D. Rettenwander, S. Pristat, E. Dashjav, C. M. N. Kumar, D. Topa and F. Tietz, *Solid State Sci*, 2016, **60**, 99–107.
- N. Akhmetov, N. Ovsyannikov, N. Gvozdik, M. Pogosova, S. Ryazantsev, S. Lipovskikh,
  I. Krasnikova and K. Stevenson, *J Memb Sci*, 2022, 643, 120002.
- C. Zhang, H. Chen, Y. Qian, G. Dai, Y. Zhao and G. Yu, *Advanced Materials*, 2021, 33, 1–
  8.
- 6 M. Pahlevaninezhad, P. Leung, P. Q. Velasco, M. Pahlevani, F. C. Walsh, E. P. L. Roberts and C. Ponce de León, *J Power Sources*, DOI:10.1016/j.jpowsour.2021.229942.
- B. Ok, W. Na, T. H. Kwon, Y. W. Kwon, S. Cho, S. M. Hong, A. S. Lee, J. H. Lee and C.
  M. Koo, *Journal of Industrial and Engineering Chemistry*, 2019, 80, 545–550.
- 8 H. Chen, Y. Zhou and Y. C. Lu, *ACS Energy Lett*, 2018, **3**, 1991–1997.
- 9 K. Takechi, Y. Kato and Y. Hase, *Advanced Materials*, 2015, **27**, 2501–2506.
- 10 X. Wei, W. Xu, M. Vijayakumar, L. Cosimbescu, T. Liu, V. Sprenkle and W. Wang, *Advanced Materials*, 2014, **26**, 7649–7653.
- W. Wang, W. Xu, L. Cosimbescu, D. Choi, L. Li and Z. Yang, *Chemical Communications*, 2012, 48, 6669–6671.
- H. Senoh, M. Yao, H. Sakaebe, K. Yasuda and Z. Siroma, *Electrochim Acta*, 2011, 56, 10145–10150.
- K. Jurczuk, A. Galeski, M. Mackey, A. Hiltner and E. Baer, *Colloid Polym Sci*, 2015, 293, 1289–1297.
- Y. Ashraf Gandomi, I. V. Krasnikova, N. O. Akhmetov, N. A. Ovsyannikov, M. A. Pogosova, N. J. Matteucci, C. T. Mallia, B. J. Neyhouse, A. M. Fenton, F. R. Brushett and K. J. Stevenson, ACS Appl Mater Interfaces, 2021, 13, 53746–53757.
- Z. Waris, N. O. Akhmetov, M. A. Pogosova, S. A. Lipovskikh, S. V. Ryazantsev and K. J. Stevenson, *Membranes (Basel)*, 2023, 13, 155.