Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information

1 2

3 Hydrogen spillover effect - Harnessing Hydrogen Evolution Reaction

4 from Diverse Carbon-based Supports with Tungsten Oxide Catalyst

- 5
- 6 R Rajalakshmi, G Srividhya, C Viswanathan, N Ponpandian*
- 7 Department of Nanoscience and Technology, Bharathiar University, Coimbatore, India.
- 8
- 9

10	Table	of contents:
11		
12	-	Supplementary Figures S1- S27
13	-	Supplementary Table S1-S5
14	-	References
15	-	Supplementary Calculation
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		

Supplementary figures

Figure S4. EDAX representing the carbon and oxygen content of reduced graphene sheets
(GR). Inset represents the FESEM image of multilayered reduced graphene sheets.

- **Figure S6.** FESEM image of as purchased carbon black sub-micro particles (CB)

Figure S7. X-Ray diffraction patterns of GO, rGO and CB.

Figure S8. Raman spectra of GO, rGO and CB.

57 Figure S9. (a) XPS spectra of pristine WO₃ and (b) the deconvoluted XPS spectra of W 4f.

Figure S10. Deconvoluted XPS spectra of O1s of (a) WO₃/GO, (b) WO₃/rGO, and (c)
 WO₃/CB,

Figure S11. SAED pattern of graphene sheets.

Figure S12. TEM image of WO₃ nanorods.

Figure S13 - The turnover frequency (TOF) of CC@WO₃/GR and SS@WO₃/GR in both the acidic and basic electrolytes at different overpotential values related to the H_2 gas production.

Figure S14. Comparison of overpotential values of all the electrocatalysts of WO₃ at
 different intervals of current density.

79 Figure S15. (a) Graphene sheet, (b) single graphene in Ball and stick model, (c) graphene in

81

Figure S16. Cyclic voltammetry curves of (a) WO_3/GO , (b) WO_3/rGO , and (c) WO_3/CB electrocatalyst at different scan rates indicating the hydrogen desorption peaks. (d) The slope values of the desorption peak at different potential values vs the scan rate values to determine the slope values of all three carbon-based electrocatalysts.

88 Figure S17. TGA and DTA curves of (a) WO₃/GO, (b) WO₃-rGO, (c) WO₃/GR, and (d)
89 WO₃/CB electrocatalysts respectively.

92 Figure S18. Enlarged area of Fig. 5a representing the solution resistance and the faradaic

93 impedance.

97 Figure S19. (a) The phase angle and (b) cut off frequency measurements of the WO₃/GR
98 electrocatalyst deposited on CC and SS substrates in both the electrolytic mediums.

102 Figure S20. Comparison of the solution resistance, charge transfer resistance, cut of frequency

103 and phase angle of CC@WO₃/GR electrocatalyst in acidic and basic electrolytes.

- 105 Figure S21. Cyclic voltagramms of (a) CC@WO₃/GR 0.5 M H₂SO₄, (b) CC@WO₃/GR 1M
- 106 KOH, (c) $SS@WO_3/GR 0.5 M H_2SO_4$, (d) $SS@WO_3/GR 1M KOH$ swept in the non-faradaic
- 107 region at different intervals of san rate from 5- 200 mV/s.

Figure S22. Cyclic voltagramms of (a) WO_3/GO , (b) WO_3/rGO , (c) WO_3/GR , and (d) WO_3/CB in 0.5 M H₂SO₄ swept in the non-faradaic region at different intervals of san rate from 5- 200 mV/s.

115 **Figure S23.** The capacitance obtained from the fit of double-layer charging current density 116 versus scan rate for WO₃/GO, WO₃/rGO, WO₃/GR, and WO₃/CB electrocatalysts in acidic 0.5 117 M H_2SO_4 electrolyte

- 118
- 119
- 120

121

Figure S24. (a) LSV normalized curves of the electrocatalysts WO_3/GO , WO_3/rGO , WO_3/GR , and WO_3/CB with respect to electrochemical active surface area and (b) the comparison of the overpotential values at 10 mA cm⁻² with respect to geometric surface area and the electrochemical active surface area.

129 Figure S25. A portion of CC@WO₃/GR electrocatalyst after the HER long term stability test.

134 Figure S26. Deconvoluted spectra of W4f before and after the HER long term stability test.

138 Figure S27. Deconvoluted spectra of O1s before and after the HER long term stability test.

Supplementary Table

Table S1: The overpotential at $\eta = 10$ mA cm⁻² and Tafel slope values of all the studied

152	electrocatalysts of	WO ₃ in both	acidic and basic	electrolytic mediums	5.

S. No	Electrocatalyst	Overpotential at $\eta = 10 \text{ mA cm}^{-2}$		Tafel slope	
		0.5 M H ₂ SO ₄	1 М КОН	$0.5M H_2SO_4$	1 М КОН
1.	WO ₃	116	155	98	107
2.	WO ₃ /GO	92	113	74	83
3.	WO ₃ /rGO	90	117	70	78
4.	WO ₃ /GR	84	93	66	72
5.	WO ₃ /CB	110	122	86	89
6.	CC@WO ₃ /GR	64	78	54	58
7.	SS@WO ₃ /GR	76	83	62	69
8.	Pt/C	15	17	29	32

155 Table S2: Mechanism of Hydrogen evolution reaction in acidic and alkaline electrolytes

	Acid	Alkaline	Tafel slope
Overall	$^* + 2H^+ + 2e^- \rightarrow H_2$	* + 2H ₂ O + 2e ⁻ \rightarrow H ₂ + 2OH ⁻	$\eta = a + b \log (-j)$
Volmer	$^* + \mathrm{H}^+ + \mathrm{e}^- \rightarrow \mathrm{H}^*$	* + H ₂ O + e ⁻ \rightarrow H [*] + OH ⁻	$b = 2.3 RT/\alpha F \sim 120$ mV/dec
Heyrovsky		$^{*} + H_{2}O + e^{-} + H^{*} \rightarrow H_{2} + OH^{-} + ^{*}$	$b = 2.3 \text{RT}/(1+\alpha) \text{F} \sim 40$ mV/dec
Tafel	$2\mathrm{H}^* \! \rightarrow \mathrm{H}_2 \! + \! 2^*$	$2\mathrm{H}^* \! \rightarrow \! \mathrm{H}_2 \! + \! 2^*$	$b = 2.3RT/2F \sim 30$ mV/dec
Where " * "	denotes the active site	on the surface of the electro	catalyst.

Table S3: The Nernst equation and coupling processes necessary to produce the three 158 dimensional Tungsten Pourbaix diagram at T = 298 K.

No	Species	Reaction	Nernst equation
1.	WO ₂ (s)/W(s)	$WO_2 + 4H^+ + 4e^- = W + 2H_2O$	E _e = -0.15 - 0.059pH
2.	WO ₃ (s)/WO ₂ (s)	$WO_3+2H^++2e^-=WO_2+H_2O$	$E_e = 0.038 - 0.059 pH$
3.	WO3(s)/ HW6O215-(aq)	$6WO_3 + 3H_2O = HW_6O_{21}^{5-} + 5H^+$	$5pH = log [HW_6O_{21}^{5-}] + 20.92$
4.	HW ₆ O ₂₁ ⁵⁻ (aq)/WO ₄ ²⁻ (aq)	$HW_6O_{21}^{5-} + 3H_2O = 6WO_4^{2-} + 7H^+$	$7pH = 6log [WO_4^{2-}] - log [HW_6O_{21}^{5-}] + 67.82$
5.	WO ₃ (s)/ WO ₄ ²⁻ (aq)	$WO_3 + H_2O = WO_4^{2-} + 2H^+$	$2pH = log[WO_4^{2-}] + 14.79$
6.	WO4 ²⁻ (aq)/ W(s)	$WO_4^{2-} + 8H^+ + 6e^- = W + 4H_2O$	$E_e = 0.06 + 0.01 log[WO_4^{2-}] - 0.079 pH$
7.	WO4 ²⁻ (aq)/ WO2(s)	$WO_4^{2-} + 4H^+ + 2e^- = WO_2 + 2H_2O$	$E_e = 0.48 + 0.03 log[WO_4^{2\text{-}}] - 0.118 \text{ pH}$
8.	HW ₆ O ₂₁ ⁵⁻ (aq)/ WO ₂ (s)	$HW_6O_{21}^{5-} + 17H^+ + 12e^- = 6WO_2 + 9H_2O$	$E_e{=}0.14 + 0.005log[HW_6O_{21}{}^{5\text{-}}] - 0.084 \text{ pH}$

- 161 Table S4: The stable and unstable compounds when the elements W and C react to produce
- 162 the Pourbaix (E-pH) plot.

Elements studied	Stable compounds	Unstable compounds
	$WO_3(s) + CH_4(aq)$	$WO_4^{2-} + CO_2(aq)$
	$CH_4(aq) + W_{18}O_{49}(s)$	$W(s) + CH_3CH_2OH$ (aq)
W (Tungsten) – 80%	$CH_4(aq) + W(s)$	$W(s) + CH_3COOH$ (aq)
C (Carbon) – 20%	$W_8O_{21}(s) + CH_4(aq)$	$WO_3(s) + CO_2 aq)$
Concentration: 10 ⁰ mol/kg	$WO_3(s) + CO_2(s)$	$WO_3(s) + CO_3^{2-}$
Temperature: 298 K	$WO_4^{2-} + CO_3^{2-}$	$CO_2(s) + W_{18}O_{49}(s)$
	$CH_4(aq) + WO_4^{2-}$	$W_{18}O_{49}(s) + CH_3CH_2OH$ (aq)
	$HCO^{3-} + WO_4^{2-}$	$W_{18}O_{49}(s) + CH_3COOH$ (aq)
	$WO_4^{2-} + CO_2(s)$	

S.No	Electrocatalyst	Reference
1.	WO ₃ /C@CoO	[1]
2.	Pt/def-WO ₃ @CFC	[2]
3.	Pt/WO ₃	[2]
4.	CC@WO ₃ /GR	This work
5.	SS@ WO ₃ /GR	This work
6.	WO ₃ /GR	This work
7.	Fe-WO _x P/rGO	[3]
8.	WO ₃ /rGO	This work
9.	WO ₃ /GO	This work
10.	V-WO ₃	[4]
11.	WSe ₂ /WO ₃ -y	[5]
12.	WO ₃ /CB	This work
13.	WO ₃ /TiO ₂	[6]
14.	WO _{3-x} -CNFs	[7]
15.	$CC@WO_3 - Sm 4\%$	[8]
16.	WS ₂ /WC-WO ₃	[9]
17.	Mn-WO ₃	[4]
18.	WO ₃ /MoS ₂ -MoOx	[10]
19.	CoSe ₂ /WSe ₂ /WO ₃ @CC	[11]
20.	$WO_3.2H_2O/WS_2$	[12]
21.	WO ₃ -Sm 4%	[8]
22.	WS ₂ -WO ₃ -CNF	[13]
23.	Pd@WO ₃	[14]
24.	CoSe ₂ -WO ₃	[11]
25.	$MoS_2@WO_3$	[10]
26.	WO ₃ /NPRGO	[15]
27.	Meso-WO _{2.83}	[16]
28.	WS ₂ -WO ₃	[17]
29.	Ta-WO ₃	[18]
30.	Zeolite/WO ₃	[19]

Table S5: References of the electrocatalysts illustrated in Figure 8d.

Supplementary Calculation

170 The turnover frequency is calculated using the relation

$$TOF = j / (m \times F \times n) (s^{-1})$$

171 Here, j is the current density at a particular overpotential value (η in mV), m is the number of

moles present in the catalyst, F is the Faraday constant (96,485.4 C mol⁻¹), and n is the number
of electrons transferred to generate one molecule of hydrogen gas which is 2 [20].

174 To calculate the number of moles present in the active electrocatalyst - WO₃/GR, the individual

175 number of moles of WO₃ and reduced graphene layers (GR) were taken into consideration.

176 Moles of WO_3 = weight of WO_3 / molecular weight of WO_3

177 The molecular weight of WO₃ is (183.84 g/mol) + 3 * (16.00 g/mol) = 231.84 g/mol.

178 Weight of $WO_3 = 80 \text{ mg} = 0.080 \text{ g}$ (The ratio of WO_3 :GR in the composite is 80 mg : 20 mg)

179 Therefore, moles of $WO_3 = 0.080g / 231.84 g/mol = 0.000345066$ moles

The accurate number of moles of GR could not be determined without knowing the exact molecular weight of GR which is dependent on numerous factors such as the extent of reduction of graphene oxide (GO), the presence of residual functional groups, and the exact number of layers of graphene. Hence an approximate estimation is deducted from the elemental analysis derived from EDAX measurements in FESEM from Supplementary Figure S4.

185 Molecular weight from atomic weight percentage of elements in GR

186 = [(C wt. % /100) * 12.01 g/mol] + [(O wt. % /100) * 16.00 g/mol]

187 The approximate molecular weight of GR = 12.8115 g/mol

188 Moles of GR = 0.020g / 12.8115 g/mol = 0.001561097 moles

189 Total number of moles in the WO_3/GR electrocatalyst is 1.906163 x 10⁻³ moles

190 At an overpotential of 50 mV, the respective current density, j for the CC@WO₃/GR electrode

191 in the 0.5M H_2SO_4 electrolyte is 7.66 mA cm⁻² (From Figure 4b).

192	Therefore TOF = 7.66 x 10^{-3} / (1.906163 x 10^{-3} x 96485.4 x 2) = 0.00208 x 10^{-2} s ⁻¹
193 194	Similarly, the TOF values were calculated at 75, 100, 125, 150,175, and 200 mV [21] for the electrodes CC@WO ₃ /GR and SS@WO ₃ /GR in both the acidic and basic electrolytes and
195	represented in Figure S13 respectively.
196	
197	
198	
199	
200	
201	
202	
203	
204	
205	
206	
207	
208	
209	
210	
211	
212	

213 References

- 214 1 Y. Lv, Y. Liu, C. Chen, T. Wang and M. Zhang, *Electrochim Acta*, 2018, 281, 1–8.
- 215 2 H. Tian, X. Cui, L. Zeng, L. Su, Y. Song and J. Shi, *J Mater Chem A Mater*, 2019, 7,
 6285–6293.
- T. H. Wondimu, G.-C. Chen, D. M. Kabtamu, H.-Y. Chen, A. W. Bayeh, H.-C. Huang
 and C. H. Wang, *Int J Hydrogen Energy*, 2018, 43, 6481–6490.
- 219 4 S. Chandrasekaran, P. Zhang, F. Peng, C. Bowen, J. Huo and L. Deng, *J Mater Chem A* 220 *Mater*, 2019, 7, 6161–6172.
- V. Yu. Fominski, S. N. Grigoriev, R. I. Romanov, M. A. Volosova, A. I. Grunin and G.
 D. Teterina, *Technical Physics Letters*, 2016, 42, 555–558.
- S. Y. Toledo Camacho, A. Rey, M. D. Hernández-Alonso, J. Llorca, F. Medina and S.
 Contreras, *Appl Surf Sci*, 2018, 455, 570–580.
- Z25 7 J. Chen, D. Yu, W. Liao, M. Zheng, L. Xiao, H. Zhu, M. Zhang, M. Du and J. Yao, ACS
 Appl Mater Interfaces, 2016, 8, 18132–18139.
- R. Rajalakshmi, C. Viswanathan and N. Ponpandian, *Sustain Energy Fuels*, 2021, 5,
 5851–5865.
- Y. Chen, R. Ren, Z. Wen, S. Ci, J. Chang, S. Mao and J. Chen, *Nano Energy*, 2018, 47,
 66–73.
- 231 10 M. Tayebi, Z. Masoumi, M. Kolaei, A. Tayyebi, M. Tayebi, B. Seo, C.-S. Lim, H.-G.
- Kim and B.-K. Lee, *Chemical Engineering Journal*, 2022, **446**, 136830.
- 233 11 Y. Lv, Y. Liu, Y. Liu, Z. Chen and M. Zhang, J Alloys Compd, 2018, 768, 889-895.
- L. Yang, X. Zhu, S. Xiong, X. Wu, Y. Shan and P. K. Chu, *ACS Appl Mater Interfaces*,
 2016, 8, 13966–13972.
- 236 13 X. Zhang, P. Yang and S. P. Jiang, J Nanostructure Chem, 2021, 11, 367–380.
- 237 14 R. Choudhary, S. Patra, R. Madhuri and P. K. Sharma, *ACS Sustain Chem Eng*, 2017, 5,
 238 9735–9748.

- 239 15 G. Hu, J. Li, P. Liu, X. Zhu, X. Li, R. N. Ali and B. Xiang, *Appl Surf Sci*, 2019, 463, 275–282.
- 241 16 H. Cheng, M. Klapproth, A. Sagaltchik, S. Li and A. Thomas, *J Mater Chem A Mater*,
 242 2018, 6, 2249–2256.
- 243 17 X. Shang, Y. Rao, S.-S. Lu, B. Dong, L.-M. Zhang, X.-H. Liu, X. Li, Y.-R. Liu, Y.-M.
- 244 Chai and C.-G. Liu, *Mater Chem Phys*, 2017, **197**, 123–128.
- 245 18 X. Xie, W. Mu, X. Li, H. Wei, Y. Jian, Q. Yu, R. Zhang, K. Lv, H. Tang and S. Luo, *Electrochim Acta*, 2014, **134**, 201–208.
- 247 19 S. F. Anis and R. Hashaikeh, Journal of Nanoparticle Research, 2018, 20, 47.
- 248 20 Anantharaj S, Karthik P, Noda S, *Angewandte Chemie International Edition*, 2021,
 60(43), 23051-23067.
- 250 21 Roy S, Akbar K, Jeon J, Jerng S, Truong L, Kim K, Yi Y, Chun S, Journal of Materials
- 251 *Chemistry A*, 2019, 7(36), 20590-20596.