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S1. Potential Parameters and Point Charges of [MMIM][BF4]

Fig. S1. Configuration of [MMIM][BF4] and corresponding atomic IDs.

Table S1. Potential parameters1,2 and point charges for [MMIM][BF4].

Molecule Atomic ID Atomic type ε/kB (K) σ (Å) q (e)

N1 NA 85.55 3.250 0.173

N2 NA 85.55 3.250 0.173

C1 CT 55.05 3.400 0.384

C2 CT 55.05 3.400 0.384

C3 CW 43.28 3.400 −0.198

C4 CW 43.28 3.400 −0.198

C5 CR 43.28 3.400 0.144

H1 H1 7.90 2.471 0.17

H2 H1 7.90 2.471 0.17

H3 H1 7.90 2.471 0.17

H4 H1 7.90 2.471 0.17

H5 H1 7.90 2.471 0.17

H6 H1 7.90 2.471 0.17

H7 H4 7.55 2.511 0.238

H8 H4 7.55 2.511 0.238

[MMIM]+

H9 H5 7.55 2.422 0.256

B B 47.81 3.581 1.134
[BF4]−

F F 30.70 3.118 −0.533
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S2. Potential Parameters and Point Charges of Guest Molecules

Fig. S2. Configuration of guest molecules and corresponding atomic types.

Table S2. Potential parameters3 and point charges for CO2 and N2.

Molecule Atomic type ε/kB (K) σ (nm) q (e)

C 27.0 2.80 0.70
CO2

O 79.0 3.05 −0.35

N 36.0 3.31 −0.48
N2

COM 0.0 0.0 0.96
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S3. Machine Learning Algorithms

a) Categorical Boosting (CatBoost)

CatBoost is a new gradient boosting algorithm developed by Dorogush et al.,4 which works 

successfully with categorical features by minimizing information loss. Compared to other gradient 

boosting algorithms, CatBoost is unique. To address the issue of target leakage, it first employs 

ordered boosting, an effective modification of gradient boosting algorithms. Additionally, this 

algorithm works well with small datasets. Third, CatBoost has the ability to manage categorical 

features. Typically, this handling is finished during the preprocessing stage and entails changing the 

original categorical variables to one or more numerical values.

b) eXtreme Gradient Boosting (XGBoost)

XGBoost model was developed by Chen et al.5 and it is based on the gradient boosting decision tree. 

Compared with the traditional gradient boosting algorithm, the XGBoost model has made many 

improvements. It can be faster than other ensemble algorithms that use gradient boosting and have 

been considered an advanced evaluator with ultra-high performance in both classification and 

regression problems.

c) Comparison of CatBoost and XGBoost Algorithms

XGBoost has been widely used in successfully discovery and data analysis of nanoporous materials 

(e.g. MOFs) for gas storage and separation, as reflected from an excellent review6. In comparison, 

CatBoost is a relatively new algorithm but its applications in the field of separation-material design 

has not been fruitfully explored. Catboost has been demonstrated consistently faster for big-data 

mining than XGBoost. Furthermore, it has been demonstrated that CatBoost can obtain the best 

results in terms of generalization accuracy and AUC (Area Under Curve) than XGBoost.7
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d) Optimization of ML Parameters

In machine learning, parameter tuning is a tedious but essential task, because it considerably affects 

the performance of the algorithm. Manual call-ups are time-consuming, and grid and random 

searches require no manpower but a long run time. In this paper, we use the Bayesian algorithm to 

adjust the parameters of our two machine learning models.

In this work, the Python package is used to train the CatBoost model. The Bayesian 

optimization method's process for modifying the four CatBoost model parameters for simulated 

data is described, respectively. And during that process, the primary parameters for tuning are 

learning_rate, max_depth, n_estimators, num_leaves, and boosting type. In Table S3, for simulated 

data of 7,746 [MMIM][BF4]/COF composites based on 0−80 vol.%, the corresponding parameters 

are ultimately set to 0.8027, 16, 54, 35, and “gdbt”.

Table S3. Parameters optimization of CatBoost model by the Bayesian algorithm of 7,746 [MMIM][BF4]/COF 

composites based on 0−80 vol.% with ILs loading ratio and geometric descriptors.

R2

learning_rate max_depth n_estimators num_leaves
Training set Testing set

0.4229 12 10 16 0.864 0.830

0.1553 2 36 18 0.698 0.690

0.4028 9 69 35 0.965 0.940

0.2124 14 14 34 0.860 0.824

0.4231 9 30 11 0.928 0.903

0.8027 16 54 35 0.990 0.949

0.8776 14 22 3 0.966 0.925

0.1781 14 24 22 0.895 0.860

0.9583 9 107 16 0.982 0.943

0.6896 14 13 38 0.931 0.897

0.9890 12 49 40 0.983 0.938
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0.1122 8 137 15 0.917 0.898

0.2949 3 13 34 0.667 0.662

0.2195 5 79 4 0.864 0.845

0.5784 3 93 35 0.905 0.883

0.1113 7 107 21 0.898 0.876

0.0595 9 103 26 0.875 0.853

0.9451 10 137 8 0.989 0.941

0.1479 13 66 9 0.946 0.918

0.9282 6 115 37 0.972 0.944

In the XGBoost model, there are five parameters, namely "gamma, learning_rate, max_depth, 

n_estimators, booster", which are focused during the parameter adjustment process. Using the 

Bayes Optimization method, we tune four parameters in a small range. The process of the Bayesian 

optimization method automatically adjusting the three parameters of the XGBoost model is shown 

in Table S4. Finally, the optimal parameters are set as follows: gamma = 3.974, learning_rate = 

0.5434, max_depth = 7, n_estimators = 137, booster = "gbtree". Other parameters were the default 

values in the algorithm.

Table S4. Parameters optimization of XGBoost model by the Bayesian algorithm of 7,746 [MMIM][BF4]/COF 

composites based on 0−80 vol.% with ILs loading ratio and geometric descriptors.

R2

gamma learning_rate max_depth n_estimators
Training set Testing set

4.176 0.7231 1 61 0.701 0.705

1.476 0.1014 4 70 0.810 0.795

3.974 0.5434 7 137 0.961 0.915

2.052 0.8793 1 134 0.730 0.728

4.179 0.5631 3 40 0.892 0.868

8.009 0.9686 6 139 0.945 0.905

8.765 0.8957 2 9 0.714 0.728
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1.707 0.8794 2 85 0.893 0.872

6.868 0.8363 1 150 0.731 0.729

9.889 0.7507 5 158 0.947 0.912

2.885 0.1387 1 136 0.675 0.683

2.124 0.2729 8 12 0.924 0.865

7.075 0.8232 10 135 0.963 0.8966

5.613 0.7382 10 32 0.964 0.900

3.032 1.0000 4 29 0.888 0.859

3.957 0.4606 7 30 0.960 0.916

4.435 0.2221 5 34 0.870 0.841
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Fig. S3. Comparison of prediction results by two ML models with the GCMC-simulated TSN of 7,746 vol.%-

based [MMIM][BF4]/COF composites: (a) (b) CatBoost; (c) (d) XGBoost.

In Fig. S3, based on CatBoost and XGBoost models, the calculated and predicted TSN values 

of 7,746 vol.%-based [MMIM][BF4]/COF composites are correlated. It can be seen that the data 

points are closely distributed along the diagonal (red line), and the R2 value of both ML models 

exceeds ~0.96, along with very small MAE and RMSE values. This means that there is a good 

consistency between the calculated and predicted TSN values, indicating that the ML models are 

well-trained. This also proves that the feature descriptors we selected are sufficient for ML model 

training.
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Table S5. Parameters optimization of CatBoost model by the Bayesian algorithm of 7,664 [MMIM][BF4]/COF 

composites based on 0−80 wt.% with ILs loading ratio and geometric descriptors.

R2

learning_rate max_depth n_estimators num_leaves
Trainingset Testingset

0.4229 12 1 31 0.417 0.412

0.1553 2 38 35 0.650 0.645

0.4028 9 84 69 0.967 0.942

0.2124 14 6 67 0.707 0.695

0.4231 9 29 21 0.911 0.884

0.8040 2 140 11 0.875 0.855

0.8776 14 18 5 0.951 0.914

0.1781 14 21 43 0.870 0.847

0.0100 1 71 78 0.198 0.214

0.6896 14 5 75 0.822 0.796

0.0100 1 163 35 0.299 0.309

0.1122 8 182 30 0.927 0.906

0.2949 3 5 68 0.383 0.384

0.2195 5 99 6 0.874 0.859

0.5784 3 118 70 0.906 0.885

0.1113 7 139 42 0.908 0.892

0.0595 9 133 52 0.883 0.864

0.2070 2 101 41 0.588 0.575

0.1479 13 80 17 0.948 0.925

0.1781 14 21 43 0.869 0.840
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Table S6. Parameters optimization of XGBoost model by the Bayesian algorithm of 7,664 [MMIM][BF4]/COF 

composites based on 0−80 wt.% with ILs loading ratio and geometric descriptors.

R2

gamma learning_rate max_depth n_estimators
Training set Testing set

4.176 0.7231 1 61 0.607 0.588

1.476 0.1014 4 70 0.781 0.764

2.052 0.8793 1 134 0.638 0.604

4.179 0.5631 3 40 0.881 0.858

8.009 0.9686 6 139 0.934 0.898

8.765 0.8957 2 9 0.680 0.655

1.707 0.8794 2 85 0.892 0.865

6.868 0.8363 1 150 0.642 0.612

9.889 0.7507 5 158 0.934 0.896

2.885 0.1387 1 136 0.590 0.577

2.124 0.2729 8 12 0.927 0.882

3.974 0.5434 7 137 0.964 0.931

7.677 0.826 10 134 0.957 0.896

7.732 0.7915 8 32 0.950 0.903

6.552 0.4765 8 99 0.955 0.920

0.010 1.0000 3 99 0.898 0.870

7.299 1.0000 8 84 0.959 0.915
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Fig. S4. Comparison of prediction results by two ML models with the GCMC-simulated TSN of 7664 wt.%-

based [MMIM][BF4]/COF composites: (a) (b) CatBoost; (c) (d) XGBoost.

In Fig. S4, both the CatBoost and XGBoost models are well-trained according to simulation 

data of 7746 wt.%-based composites, the R2 value of both ML models exceeds ~0.96. In the training 

process of ML models, two groups of simulation data adopt the same feature descriptors, which 

means that the effect of feature descriptors on the separation performance of composites can be 

compared more intuitively. Considering that the accuracy of the CatBoost model is slightly higher 

than that of XGBoost, the following analysis aims at the output results of CatBoost.
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Fig. S5. Local interpretation (SHAP value distribution) of [MMIM][BF4]/COF composites by the CatBoost model: 

(a) 7,746 vol.%-based; (b) 7,664 wt.%-based. (Red points: higher descriptor values, Blue points: lower descriptor 

values; Wide: dense distribution of samples, Narrow: sparse distribution of samples)

The SHAP values are calculated to quantify the effect of features on the CatBoost model 

output in terms of both magnitudes (significant or insignificant) and direction (positive or negative). 

Also, the color represents the value of the feature and is scaled to the same range. Fig. S5 shows the 

distribution of SHAP values for all composites, with the 6 descriptors listed in descending order of 

importance. The results show that no matter vol.% or wt.% is used for composite construction, the 

parameter of ILs loading ratio has the greatest impact on the output of the CatBoost model.
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