Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Hollow Nano-flowers NiCo₂O₄@Nb₂COx MXene Heterostructure via Interfacial Engineering for High-performance Flexible Supercapacitor Electrodes

Baolei Shen^a, Xilin Liao^a, Xianjin Hu^a, Hai-Tao Ren^a, Jia-Horng Lin^{a,b,c,d,e}, Ching-Wen Lou^{a,b,f,g,h,*}, Ting-Ting Li^{a,i,*}

^a Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China

^b Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Qingdao 266071, China

^c Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407802, Taiwan

^d School of Chinese Medicine, China Medical University, Taichung 404333, Taiwan

^eOcean College, Minjiang University, Fuzhou 350108, China

^f Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413305, Taiwan

^g Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404332, Taiwan

ⁱ Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou 350108, China

^h Tianjin and Ministry of Education Key Laboratory for Advanced Textile Composite Materials, Tiangong University, Tianjin 300387, China.

Fig.S1 (a) and (b) are the images of muti-layers and few-layers Nb_2CTx MXene, respectively. (c)-(f) are the distribution of the four elements Nb Al O and F on the surface of Nb_2CTx MXene, respectively.

Fig.S2 (a) C 1s high-resolution spectra of $NiCo_2O_4@Nb_2CTx$ -2composite, (c-d) Nb 3d, C 1s and O1s high-resolution spectra of pure Nb_2CTxMX ene.

Fig.S3. Electrochemical performances of NiCo₂O₄@Nb₂CTx -2 electrodes in 1M Na₂SO₄ electrolyte. (a) CV and (b) GCD curves at different scan rates and current densities, respectively; (c) The EIS curves of NiCo₂O₄@Nb₂CTx-2 and NiCo₂O₄@Nb₂CTx-3 electrodes; (d) Specific capacitance change curves over different current densities.

Fig.S4. SEM image of the NiCo2O4@Nb2CTx-2 composite after 5000 cycles.

Fig.S5. (a) and (b) are the XRD and Raman pattern before and after 5000 cycles of the $NiCo_2O_4@Nb_2CTx-2$ electrode.

Fig.S7 The structure of NiCo₂O₄@Nb₂CTx-OH.

Fig.S8. DOS of pure NiCo₂O_{4.}

Fig.S9. Quantum capacitance plot for pure NiCo2O4 and NiCo2O4@Nb2CTx-2 composite.