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Characterization

FTIR spectra were collected using a Bruker Tensor 27 FTIR spectrophotometer at 4 cm–1 resolution 

and the KBr disk method. 13C nuclear magnetic resonance (NMR) spectra were recorded using an 

INOVA 500 instrument, with DMSO as the solvent and tetramethylsilane (TMS) as the external 

standard; chemical shifts are reported in parts per million (ppm). The thermal stabilities of the samples 

under N2 were measured using a TG Q-50 thermogravimetric analyzer; the cured sample (ca. 5 mg) 

was placed in a Pt cell and then heated at 20 °C min–1 from 100 to 800 °C under a N2 flow of 60 mL 

min–1. Wide-angle X-ray diffraction (WAXD) patterns were measured at the wiggler beamline 

BL17A1 of the National Synchrotron Radiation Research Center (NSRRC), Taiwan; a triangular bent 

Si (111) single crystal was used to obtain a monochromated beam having a wavelength (λ) of 1.33 Å. 

The morphologies of the polymer samples were examined through field emission scanning electron 

microscopy (FE-SEM; JEOL JSM7610F) and transmission electron microscopy (TEM), using a 

JEOL-2100 microscope operated at an accelerating voltage of 200 kV. BET surface areas and 

porosimetry measurements of the samples (ca. 40–100 mg) were performed using a BEL MasterTM 

instrument and BEL simTM software (v. 3.0.0); N2 adsorption and desorption isotherms were 

generated through incremental exposure to ultrahigh-purity N2 (up to ca. 1 atm) in a liquid N2 (77 K) 

bath; surface parameters were calculated using the BET adsorption models in the instrument’s 

software. The pore sizes of the prepared samples were determined using nonlocal density functional 

theory (NLDFT).

Electrochemical Analysis

Working Electrode Cleaning: Prior to use, the glassy carbon electrode (GCE) was polished several 

times with 0.05-µm alumina powder, washed with EtOH after each polishing step, cleaned through 

sonication (5 min) in a water bath, washed with EtOH, and then dried in air.

Electrochemical Characterization: The electrochemical experiments were performed in a three-

electrode cell using an Autolab potentiostat (PGSTAT204) and 1 M KOH as the aqueous electrolyte. 
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The GCE was used as the working electrode (diameter: 5.61 mm; 0.2475 cm2); a Pt wire was used as 

the counter electrode; Hg/HgO (RE-1B, BAS) was the reference electrode. All reported potentials 

refer to the Hg/HgO potential. A slurry was prepared by dispersing the Py-DSDA-COP or Py-DSDA-

COP/C60 or Py-DSDA-COP/MWCNTs or Py-DSDA-COP/SWCNTs samples (2 mg), carbon black 

(2 mg), and Nafion (10 wt. %) in a mixture of (EtOH/ H2O) (200 µL: 800 µL) and then sonicated for 

1 h. A portion of this slurry (5 µL) was pipetted onto the tip of the electrode, which was then dried in 

air for 30 min prior to use. The electrochemical performance was studied through CV at various 

sweep rates (5–200 mV s–1) and through the GCD method in the potential range from 0 to –1.00 V 

(vs. Hg/HgO) at various current densities (0.5–20 A g–1) in 1 M KOH as the aqueous electrolyte 

solution.

The specific capacitance was calculated from the GCD data using the equation:

Cs = (I∆t)/(m∆V) (S1)

Where Cs (F g–1) is the specific capacitance of the supercapacitor, I (A) is the discharge current, ΔV 

(V) is the potential window, Δt (s) is the discharge time, and m (g) is the mass of the NPC on the 

electrode. The energy density (E, W h kg–1) and power density (P, W kg–1) were calculated using the 

equations.

E = 1000C(ΔV)2/(2  3600)                                      (S2)

P = E/(t/3600)                                                           (S3)

We evaluated the electrochemical functionality of a symmetric supercapacitor using a CR2032 

coin cell, which consists of an anode and cathode, a bottom and top cover, a metal spring, a separator, 

and an electrolyte. Our compounds served as both the cathode and the anode in order to construct a 

symmetric supercapacitor. The slurry was created by combining 2 mg of Py-DSDA-COP or Py-

DSDA-COP/C60 or Py-DSDA-COP/MWCNTs or Py-DSDA-COP/SWCNTs, 2 mg of conductive 

carbon, 20 µL of nafion, 200 µL of ethanol, and 400 µL of water. It was then sonicated for an hour 

and cast onto carbon paper. We used a Selemion AMV membrane with an electrolyte of 1.0 M 
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aqueous KOH. The thickness of the electrodes was 0.08 cm for each electrode. The specific 

capacitance was calculated in assembled supercapacitor from the GCD data using the following 

equations: Cs = 2(I∆t)/(m∆V) where Cs (F g–1 ) is the specific capacitance of the supercapacitor, I 

(A) is the discharge current, ΔV (V) is the potential window, Δt (s) is the discharge time, and m (g) 

is the mass of the Py-COP the in the single electrode. 
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Figure S1. FT-IR spectrum of Py-Br4.
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Figure S2. Solid state NMR spectrum of Py-Ph-CHO.
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Figure S3. FTIR profiles of Py-DSDA-COP (recorded at different temperatures from 25 to 180 oC).
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Figure S4. X-ray diffraction (XRD) pattern of Py-DSDA-COP material.
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Figure S5. CV curves of (a) C60, (b) MWCNTs, and (c) SWCNTs.  GCD curves of (d) C60, (e) 

MWCNTs, and (f) SWCNTs.
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Figure S6. The specific capacitance of Py-DSDA-COP and their nanocomposite with error bars. 
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Figure S7. SEM images of Py-DSDA-COP after electrochemical analyses. 
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Figure S8. Equivalent fitted circuit to determine series resistance (Rs) and charge transfer resistance 

(Rct).
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Table S1. Comparison between the specific capacitance Py-DSDA-COP and Py-DSDA-
COP/nanocomposites with those of previously reported materials for supercapacitor application.

Electrode Capacitance Ref.

Py-DSDA-COP 56.18 F g–1 at 1 A g–1 This work

Py-DSDA-COP/C60 60.96 F g–1 at 1 A g–1 This work

Py-DSDA-COP/MWCNTs 122.27 F g–1 at 1 A g–1 This work

Py-DSDA-COP/SWCNTs 170.8 F g–1 at 1 A g–1 This work

TBN-Py-CMP 31 F g–1 at 0.5 A g–1 S1

TBN-TPE-CMP 18.45 F g–1 at 0.5 A g–1 S1

TBN-Car-CMP 18.90 F g–1 at 0.5 A g–1 S1

TBN-Car-CMP/SWCNT 53 at 0.5 A g–1 S1

H-THAQ 15 F g–1 at 1 A g–1 S2

THAQ/rGO (2:1) 76 F g–1 at 1 A g–1 S2

Pure AQ 42 F g–1 at 1 A g–1 S3

DAAQ–TFP COF 48 F g-1 at 0.1 A g–1 S4

TPA–COF–1 51.3 F g–1 at 0.2 A g–1 S5

TPA–COF–2 14.4 F g–1 at 0.2 A g–1 S5

TPA–COF–3 5.1 F g–1 at 0.2 A g–1 S5

TPT–COF–4 2.4 F g–1 at 0.2 A g–1 S5

TPT–COF–5 0.34 F g–1 at 0.2 A g–1 S5

TPT–COF–6 0.24 F g–1 at 0.2 A g–1 S5

Car-TPA COF 13.6 F g–1 at 0.2 A g–1 S6

Car-TPP COF 14.5 F g–1 at 0.2 A g–1 S6

Car-TPT COF 17.4 F g–1 at 0.2 A g–1 S6

TBN-BSU CMP 70 F g–1 at 0.5 A g–1 S7

Py-BSU CMP 38 F g–1  at 0.5 A g–1 S7

TPE-DDSQ-POIP 22 F g-1 at 1 A g-1 S8

Car-DDSQ-POIP 23 F g-1 at 1 A g-1 S8

CuTAPP-CMP/CNTs-1 70 F g–1 at 1.0 A g–1 S9

CuTAPP-CMP/CNTs-2 31 F g–1 at 1.0 A g–1 S9

CoPc/CNTs 31.5 F g–1 at 1.0 A g–1 S10

CoPc-CMP 13.8 F g–1 at 1.0 A g–1 S10

MWCNT@SACMP 549 F g–1 at 1.0 A g–1 S11



15

pNTCDA-TPAT 217.4 F g-1 at 0.5 A g-1 S12

PTPA@MWNT-4          410  F g-1 at 0.5 A g-1 S13

CNT@TFA-COF-3 338  F g-1 at 1 A g-1 S14
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