Mechanistic insights into enhanced photocatalytic H₂O₂ production

induced by a Z-scheme heterojunction of copper bismuth oxide and

molybdenum sulfide

Akshay Tikoo^a, Nikitha Lohia^a, Sri Surya Charan Kondeti^a, Praveen Meduri^{a*}

^a Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi,

Sangareddy-502285, Telangana (India)

* Corresponding Author

Email: meduripraveen@che.iith.ac.in, Tel: 040-23016214

Supplementary Information

1. H₂O₂ production using various photocatalysts

Table S1. H ₂ O ₂ yield using different photocatalysts and sacrificial agents.

Photocatalyst	Sacrificial reagent	Concentration (mg ml ⁻¹)	H_2O_2 yield (μ M h ⁻¹)	Reference
Au-TiO ₂	НСООН	1	700	[1]
Co@TiO ₂	CH ₃ OH	1	1700	[2]
CQDs@TiO2	C ₂ H ₅ OH	1.33	1140	[3]
CoP/g-C ₃ N ₄	C ₂ H ₅ OH	1	70	[4]
Nv- g-C ₃ N ₄	C ₂ H ₅ OH	1	880	[5]
RGO/Cd ₃ (TMT) ₂	CH ₃ OH	4	292	[6]
MIL-125-NH ₂	Benzylalcohol	0.71	800	[7]
Ov-Bi/Bi ₂ O _{2-x} CO ₃	C ₂ H ₅ OH	4	400	[8]
M-CdS	2- propanol	1	963	[9]

Au-MoS ₂		1	132	[10]
Fe ₂ O ₃ @C@1T/2H-MoS ₂	CH ₃ OH	0.2	315	[11]

2. Crystallite size calculation

Scherrer's equation used to calculate the crystalline size is as follows:

$$D = K\lambda/\beta \cos(\theta)$$
 (i)

where K is a dimensionless shape factor = 0.9;

 λ is x-ray wavelength;

 β is the full width at half maximum of the peak under consideration;

 θ is the diffraction angle of the peak under consideration.

3. d-spacing calculation

The interplanar distance is calculated using the following equation:

$$d = n\lambda/2\sin(\theta)$$
 (ii)

where n is the order of diffraction;

 λ is the x-ray wavelength;

 θ is the diffraction angle of the peak under consideration.

4. Tauc Plot

Fig. S1. Tauc plot of CBO and MoS₂.

Equation (iii) shows the relation between Kubelka-Munk function and band gap. The equation indicates that the intercept of the graph above is equal to the material band gap.

$$(F(R)hv)^2 = A(hv-E_g) \qquad (iii)$$

where F(R) is Kubelka-Munk function;

h is the Planck's constant;

v is the photons frequency;

A is a constant that depends on the transition probability;

E_g is the bandgap.

Sample	СВО	MoS_2
Bandgap (eV)	1.66	1.83
CB (eV)	-0.6	0.12
VB(eV)	1.06	1.95

Table S2. Bandgap of CBO and MoS₂.

Valence band edge (VB) and conduction band edge (CB) of the materials are calculated using the following equations:

$$E_{VB} = \chi - E_e + 0.5E_g \qquad (iv)$$

$$E_{CB} = E_{VB} - E_g \tag{V}$$

where χ is the absolute electronegativity;

 E_e is the energy of free electron on the normal hydrogen scale (4.5 eV);

Eg is the bandgap.

5. TRPL spectroscopy

TRPL is used to understand the charge recombination. Decay curves are fitted by Edinburgh instrument's fluoracle software based on the exponential equation:

$$y = A + B_1 \exp(-t_1/\tau_1) + B_2 \exp(-t_2/\tau_2) + B_3 \exp(-t_3/\tau_3)$$
(vi)

Average lifetime is calculated as follows:

$$\langle \tau \rangle = (B_1 \tau_1^2 + B_2 \tau_2^2 + B_3 \tau_3^2) / (B_1 \tau_1 + B_2 \tau_2 + B_3 \tau_3)$$
 (vii)

Time constants are tabulated below in Table S1.

Sample	$\tau_1(ns)$	$\tau_2(ns)$	τ_3 (ns)	τ (ns)
СВО	1.58	1.12	3.88	1.60
MoS ₂	2.79	1.44	8.81	2.85
CBO@MoS ₂	5.26	1.23	11.59	5.34

 Table S3. TRPL parameters

Fig. S2. EIS spectra of CBO.

Table S4. Fitted parameters for the circuit in Fig. S3

Sample	СВО	MoS_2	CBO@MoS ₂
R _s (ohm)	34.8	31.7	33.4
R _{ct} (kohm)	20.6	5.9	3.8

7. Absorption curves for H₂O₂ production

Fig. S3. Absorption curves for H₂O₂ production using CBO@MoS₂.

8. Material optimization

Fig. S4. H₂O₂ production with: (a) time of reaction. (b) temperature of reaction. (c) Ratio of

CBO and Mo precursor.

9. Kinetic modelling

Sample	CBO	MoS_2	CBO@MoS ₂
$K_f(\mu M min^{-1})$	1.4	4.2	29.8
k_d (min ⁻¹)	0.011	0.0026	0.0036
Saturation concentration (µM)	130	1562	8372

Table S5. Rate constants and saturation concentration for H_2O_2 production.

Table S6. Rate constants and	l saturation	concentration	for H ₂ O ₂	production	using	CBO@MoS ₂ .
------------------------------	--------------	---------------	-----------------------------------	------------	-------	------------------------

рН	3	5	7	9	11
$K_f(\mu M \min^{-1})$	37.2	31.7	29.8	26.5	23.1
$k_d (min^{-1})$	0.0028	0.0024	0.0036	0.0032	0.0033
Saturation concentration (µM)	13214	13345	8372	8337	7100

10. Solar to chemical conversion efficiency

Table S7.	SCC	efficiency.
-----------	-----	-------------

Sample	CBO	MoS_2	CBO@MoS ₂
Efficiency (%)	0.02	0.7	0.37

SCC is determined using the following formula:

$$SCC = \frac{n * \Delta G^o}{P * A * T} * 100\%$$
(x)

where n is number of moles of H_2O_2 produced;

 ΔG^o is standard Gibbs free energy of the reaction;

P is power of light source;

A is illumination area;

T is time of reaction.

Fig. S5. H₂O₂ production with addition of scavengers.

Fig. S6. Absorbance curves of NBT.

13. Mott Schottky calculations

Mott-Schottky equation is as follows:

$$\frac{1}{C^2} = \frac{2}{\varepsilon \varepsilon_0 A^2 e N_d} \left(V - V_{fb} - \frac{k_B T}{e} \right)$$

where C is the capacitance;

 ε is the dielectric constant;

 ε_0 is the permittivity of free space;

A is the surface area of electrode;

e is the elementary charge;

 N_d is the charge carrier density;

V is the applied potential;

 V_{fb} is the flat band potential;

 k_B is the Boltzmann constant;

T is the absolute temperature.

Sample	$V_{fb}(V)$	N _d
CBO	1.05	5.67E+17
MoS ₂	0.12	4.33E+18
CBO@MoS ₂	1.04	2.52E+18

Table S8. Mott Schottky data.

14. Electron transfer number calculation

Koutecký–Levich (K-L) equation is used to calculate the electron transfer number (n):

$$\frac{1}{i} = \frac{1}{B\sqrt{\omega}} + \frac{1}{i_k}$$
(viii)

$$B = 0.62 n F D_o^{\frac{2}{3}} \gamma^{\frac{-1}{6}} C_o \qquad (ix)$$

where i is measured current density;

 i_k is the kinetic current density;

n is the electron transfer number;

 ω is rotation speed (rad s⁻¹): $\omega = 2\pi N$, N is the linear rotation speed;

 $F = 96485 \text{ C mol}^{-1};$

 C_o is the concentration of O₂ in bulk ($C_o = 8.43 \times 10^{-7} \text{ mol cm}^{-3}$),

 D_o is the diffusion coefficient of O₂ in the electrolyte at 298 K ($D_o = 1.43 \times 10^{-5} \text{ cm}^2 \text{ s}^{-1}$),

 γ is the kinematic viscosity of the electrolyte ($\gamma = 0.0112 \text{ cm}^2 \text{ s}^{-1}$).

Table S9. Electron transfer number at various potentials.

Potential (V vs RHE)	0.7	0.6	0.55	0.5	0.45	0.4	0.35
Transfer number	2.12	2.14	2.12	2.21	2.31	2.27	2.35

15. STH efficiency.

Half-cell solar to hydrogen (HC-STH) efficiency can be calculated using the equation below:

$$HC - STH (\%) = \frac{|J_{ph}|[V_{bias} - V_{H^+/H_2}]}{J_{in}} \times 100$$

where J_{ph} = photocurrent density (mAcm⁻²) at measured bias.

 V_{bias} = applied bias potential w.r.t RHE.

 V_{H^+/H_2} = standard potential for hydrogen evolution reaction i.e., 0 V vs RHE.

 J_{in} = power density of light illumination, 100 mWcm⁻².

16. MoS₂ OER

Fig. S7. LSV curve of MoS₂ for OER.

17. References:

- [1] Y. Shiraishi, S. Kanazawa, Y. Kofuji, H. Sakamoto, S. Ichikawa, S. Tanaka, T. Hirai, Sunlightdriven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts, Angew. Chem. Int. Ed Engl. 53 (2014) 13454–13459. https://doi.org/10.1002/anie.201407938.
- [2] T. Baran, S. Wojtyła, A. Minguzzi, S. Rondinini, A. Vertova, Achieving efficient H₂O₂ production by a visible-light absorbing, highly stable photosensitized TiO₂, Appl. Catal. B Environ. 244 (2019) 303–312. https://doi.org/10.1016/j.apcatb.2018.11.044.
- [3] R. Ma, L. Wang, H. Wang, Z. Liu, M. Xing, L. Zhu, X. Meng, F.-S. Xiao, Solid acids accelerate the photocatalytic hydrogen peroxide synthesis over a hybrid catalyst of titania nanotube with carbon dot, Appl. Catal. B Environ. 244 (2019) 594–603. https://doi.org/10.1016/j.apcatb.2018.11.087.
- [4] Y. Peng, L. Wang, Y. Liu, H. Chen, J. Lei, J. Zhang, Visible-Light-Driven Photocatalytic H₂O₂ Production on g-C₃N₄ Loaded with CoP as a Noble Metal Free Cocatalyst, Eur. J. Inorg. Chem. 2017 (2017) 4797–4802. https://doi.org/10.1002/ejic.201700930.
- [6] J. Xu, Z. Chen, H. Zhang, G. Lin, H. Lin, X. Wang, J. Long, Cd₃(C₃N₃S₃)₂ coordination polymer/graphene nanoarchitectures for enhanced photocatalytic H₂O₂ production under visible light, Sci. Bull. 62 (2017) 610–618. https://doi.org/10.1016/j.scib.2017.04.013.
- [7] Y. Isaka, Y. Kawase, Y. Kuwahara, K. Mori, H. Yamashita, Two-Phase System Utilizing Hydrophobic Metal–Organic Frameworks (MOFs) for Photocatalytic Synthesis of Hydrogen Peroxide, Angew. Chem. Int. Ed. 58 (2019) 5402–5406. https://doi.org/10.1002/anie.201901961.
- [8] Y. Lu, Y. Huang, Y. Zhang, T. Huang, H. Li, J. Cao, W. Ho, Effects of H₂O₂ generation over visible light-responsive Bi/Bi₂O₂-xCO₃ nanosheets on their photocatalytic NOx removal performance, Chem. Eng. J. 363 (2019) 374–382. https://doi.org/10.1016/j.cej.2019.01.172.
- [9] J.H. Lee, H. Cho, S.O. Park, J.M. Hwang, Y. Hong, P. Sharma, W.C. Jeon, Y. Cho, C. Yang, S.K. Kwak, H.R. Moon, J.-W. Jang, High performance H₂O₂ production achieved by sulfurdoped carbon on CdS photocatalyst via inhibiting reverse H₂O₂ decomposition, Appl. Catal. B Environ. 284 (2021) 119690. https://doi.org/10.1016/j.apcatb.2020.119690.
- [10] H. Song, L. Wei, L. Chen, H. Zhang, J. Su, Photocatalytic Production of Hydrogen Peroxide over Modified Semiconductor Materials: A Minireview, Top. Catal. 63 (2020) 895– 912. https://doi.org/10.1007/s11244-020-01317-9.
- [11] Y. Yang, Q. Wang, X. Zhang, X. Deng, Y. Guan, M. Wu, L. Liu, J. Wu, T. Yao, Y. Yin, Photocatalytic generation of H₂O₂ over a Z-scheme Fe₂O₃@C@1T/2H-MoS₂ heterostructured catalyst for high-performance Fenton reaction, J. Mater. Chem. A. 11 (2023) 1991–2001. https://doi.org/10.1039/D2TA08145H.