Supplementary Information for

Flexible Bi₂Te₃/PEDOT nanowire sandwich-like film towards highperformance wearable cross-plane thermoelectric generator and temperature sensor array

Minzhi Du^{a,b}, Jianyong Ouyang^{*b,c} and Kun Zhang^{*a}

- ^a Key Laboratory of Textile Science & Technology (Ministry of Education), College of Textiles, Donghua University, Shanghai 201620, PR China
- ^b Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576
- ^c National University of Singapore (Suzhou) Research Institute, No. 377 Linquan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
- *Corresponding author. Email: <u>mseoj@nus.edu.sg</u> (J. Ouyang); <u>kun.zhang@dhu.edu.cn</u> (K. Zhang)

Contents

Supplementary schemes, figures, explanatory notes, and tables including:

Scheme S1. Illustration of the Seebeck coefficient measurement.

Scheme S2. (a) Illustration of the electrical conductivity measurement using a standard van der Pauw method. (b-c) Illustration of the thermal conductivity measurement and the measurement principles of the self-heating 3ω method.

Scheme S3. Illustration of the fabrication process of the cross-plane TEG.

Scheme S4. Equivalent circuit diagram of the cross-plane TEG with an external resistance.

Fig. S1. FESEM images of (a) deposited 10 nm Bi₂Te₃@PEDOT NW film and (b) the magnified image.

Fig. S2. Temperature of the carbon paper surface when applied with a current of 3.5 A during the thermal shock treatment.

Fig. S3. Particle size distribution of thermal-shocked Bi₂Te₃ nanocrystals.

Fig. S4. Cross-sectional FESEM image of p-type 15vol.%-Bi₂Te₃@PEDOT NW film showing the interface of Bi₂Te₃ and PEDOT NW scaffold.

Fig. S5. FESEM-EDS elemental mapping patterns of p-type 15 vol.%-Bi₂Te₃@PEDOT NW film.

Fig. S6. UPS spectra of PEDOT NW and Bi₂Te₃ nanocrystal in the secondary electron cutoff region.

Fig. S7. Optical photographs of thermal-shocked p-type (a) 15 vol.%-Bi₂Te₃@PEDOT NW film and (b) 21.5 vol.%-Bi₂Te₃@PEDOT NW film.

Fig. S8. FESEM images of the surface view of p-type 15 vol.%-Bi₂Te₃@PEDOT NW film (a) before and (b) after bending for 100 cycles at a radius of 7.5 mm.

Fig. S9. (a) Thermovoltage profiles and (b) Seebeck coefficient determination of the n-type 15 vol.%-

Bi₂Te₃@PEDOT NW film.

Fig. S10. (a) Optical photograph, (b) FESEM image, and (c) pore size statistics of the porous PDMS supporting substrate.

Fig. S11. (a) Open-circuit voltage (b) total power and the maximum output power density as a function of temperature difference of the cross-plane TEG.

Fig. S12. (a) Schematic diagram of a cross-plane temperature sensor. (b) Temperature sensing performance reflected by the real-time thermovoltage at different temperature differences within 1 K. Stability at different large temperature differences with respect to (c) heating time and (d) heating-cooling cycles.

Fig. S13. Demonstration of the temperature-sensing performance by covering different sensing units with a human finger.

Fig. S14. Conformance and flexibility characterization of the cross-plane sensor array. (a) Illustration of the test diagram. (b) Optical photographs of the cross-plane sensor array attached on PLA tubes with different radii.

Explanatory note 1. Theoretical calculation process of open-circuit voltage of the cross-plane TEG.

Explanatory note 2. Calculation process of the power generation and the maximum power output of the cross-plane TEG.

Explanatory note 3. Detailed estimation of the detected temperature by each sensing unit of the crossplane sensor array.

Table S1. Elemental compositions of p-type and n-type Bi₂Te₃ powders.

Table S2. FESEM-EDS elemental analysis for p-type 15vol.%-Bi₂Te₃@PEDOT NW film.

Table S3. Component ratios of p-type Bi₂Te₃@PEDOT NW sandwich-like films.

Table S4. Comparison of TE properties in this work with the data of organic/inorganic composite TE materials reported in the literature at room temperature.

Table S5. Theoretical and measured open-circuit voltage of the cross-plane TEG.

Table S6. Total power and the maximum output power of the cross-plane TEG.

 Table S7. The detailed data and calculating process of Fig. 5d.

Supplementary references (1-26)

Supplementary schemes, figures, explanatory notes, and tables

Scheme S1. Illustration of the Seebeck coefficient measurement.

Scheme S2. (a) Illustration of the electrical conductivity measurement using a standard van der Pauw method. (b-c) Illustration of the thermal conductivity measurement and the measurement principles of the self-heating 3ω method.

Scheme S3. Illustration of the fabrication process of the cross-plane TEG.

Scheme S4. Equivalent circuit diagram of the cross-plane TEG with an external resistance.

Fig. S1. FESEM images of (a) thermally deposited 10 nm-Bi₂Te₃@PEDOT NW film and (b) the magnified image.

Fig. S2. Temperature of the carbon paper surface when applied with a current of 3.5 A during the thermal shock treatment.

Fig. S3. Particle size distribution of thermal-shocked Bi_2Te_3 nanocrystals.

Fig. S4. Cross-sectional FESEM image of p-type 15 vol.%-Bi₂Te₃@PEDOT NW film showing the

interface of Bi_2Te_3 and PEDOT NW scaffold.

Fig. S5. Individual FESEM-EDS elemental mapping patterns for characteristic elementals in p-type 15 vol.%-Bi₂Te₃@PEDOT NW film.

Fig. S6. UPS spectra of PEDOT NW and Bi_2Te_3 nanocrystal in the secondary electron cutoff region.

Fig. S7. Optical photographs of thermal-shocked p-type (a) 15 vol.%-Bi₂Te₃@PEDOT NW film and

(b) 21.5 vol.%-Bi $_2$ Te $_3$ @PEDOT NW film.

Fig. S8. FESEM images of the surface view of p-type 15 vol.%-Bi₂Te₃@PEDOT NW film (a) before and (b) after bending for 100 cycles at a radius of 7.5 mm.

Fig. S9. (a) Thermovoltage profiles and (b) Seebeck coefficient determination of the n-type 15 vol.%-Bi₂Te₃@PEDOT NW film.

Fig. S10. (a) Optical photograph, (b) FESEM image, and (c) pore size statistics of the porous PDMS supporting substrate.

Fig. S11. (a) Open-circuit voltage (b) total power and the maximum output power density as a function of temperature difference of the cross-plane TEG.

Fig. S12. (a) Schematic diagram of a cross-plane temperature sensor. (b) Temperature sensing performance reflected by the real-time thermovoltage at different temperature differences within 1 K. The insert shows the magnified response signal to a temperature difference of 0.05 K. Stability at different large temperature differences with respect to (c) heating time and (d) heating-cooling cycles.

Fig. S13. Demonstration of the temperature-sensing performance by covering different sensing units with a human finger. The ambient temperature is 21.8°C and the surface body temperature is 29.8°C. All scale bars are 10 mm.

Fig. S14. Conformance and flexibility characterization of the cross-plane sensor array. (a) Illustration of the test diagram. (b) Optical photographs of the cross-plane sensor array attached on PLA tubes with different radii. All scale bars are 10 mm.

Explanatory note 1

Theoretical calculation process of the open-circuit voltage of the cross-plane TEG

The theoretical open-circuit voltage (V_{oc-th}) of the as-prepared cross-plane TEG can be estimated by $V_{oc-th} = (|S_p| + |S_n|) \times \Delta T \times N$. Where S_p is the Seebeck coefficient of p-type TE leg (0.2664 mV K⁻¹), S_n is the Seebeck coefficient of n-type TE leg (-0.1581 mV K⁻¹), and N is the number of p-n pairs (8). $V_{oc-th} = 8 \times (0.2664 + 0.1581) \times \Delta T = 3.396\Delta T$. Hence, when ΔT is 3.6 K, 7.1 K, 10.9 K, 14.3 K, and 17.8 K, V_{oc-th} can be 12.226 mV, 24.112 mV, 37.016 mV, 48.563 mV, and 60.449 mV. Providing that the ΔT of 25 K and 30 K are applied, corresponding V_{oc-th} of 84.900 mV and 101.880 mV can be calculated.

Due to the slight heat conduction and variation of TE legs, the measured open-circuit voltage (V_{oc-m}) is 11.186 mV, 21.772 mV, 33.366 mV, 44.038 mV, and 54.706 mV. Therefore $V_{oc-th}-V_{oc-m}$ relation can be linearly fitted as $V_{oc-m} = 0.9065V_{oc-th} + 0.039$ (R² = 0.99995). Providing that the ΔT of 25 K, 30 K, and 80 K are applied, corresponding V_{oc-m} of 76.962 Mv, 92.354 mV, and 246.278 mV can be calculated. All data is recorded in **Table S5**.

Explanatory note 2

Calculation process of the power generation and maximum power output of the cross-plane TEG

The resistance of a p-type TE leg can be calculated as $r = \frac{l}{\sigma A}$, where *l*, σ , and *A* are the length, electrical conductivity, and cross-section of the p-type TE leg, respectively. The total resistance of 8 p-type TE legs is $r_p = 8 \times 5 \text{ mm}/(104.3 \text{ S cm}^{-1} \times 2 \text{ mm} \times 23.52 \text{ µm}) = 81.53 \Omega$. Likewise, the total resistance of 8 n-type TE legs is r_n is 75.92 Ω . Therefore, the total resistance r_{leg} of the cross-plane TEG is 157.45 Ω . Due to the resistance of liquid metal, the resistance of copper electrodes, and contact resistance between these components, the measured *r* reaches up to 250 Ω . When the internal resistance *r* equals the external resistance *R*, the maximum output power $P_{\text{max-output}}$ occurs.

 $V_{\text{oc-m}}$ is the measured open-circuit voltage. $V_{\text{output-m}}$ is the measured voltage of external resistance *R*. As the cross-plane TEG and the external resistance *R* are connected in series, the voltage on *R* can be calculated theoretically to be half of $V_{\text{oc-m}}$ according to the voltage-division principle. $V_{\text{output-m}}$ is 4.936 mV, 10.465 mV, 16.459 mV, 21.770 mV, and 26.669 mV when the ΔT is 3.6 K, 7.1 K, 10.9 K, 14.3 K, and 17.8 K.

Hence, the total power (P_{total}) generated by the cross-plane TEG can be calculated as $P_{total} = (V_{oc-m})^2/(r+R)$. Based on $P_{max-output} = (V_{output-m})^2/R$, $P_{max-output}$ is 0.098 μ W, 0.438 μ W, 1.084 μ W, 1.896 μ W, and 2.845 μ W when the ΔT is 3.6 K, 7.1 K, 10.9 K, 14.3 K, and 17.8 K. The $P_{max-output}$ is 47.94% of P_{total} , slightly lower than the theoretical calculation due to the power consumption of external circuit. Providing that the ΔT of 25 K, 30 K, and 80 K are applied, corresponding $P_{max-output}$ of 5.792 μ W, 8.340 μ W, and 59.306 μ W can be calculated. All data is recorded in **Table S6**.

Explanatory note 3

Detailed estimation of the detected temperature by each sensing unit of the cross-plane sensor array

The thermovoltage (V_{them}) of a cross-plane temperature sensor under ΔT of 3.6 K, 7.1 K, 10.9 K, 14.3 K, and 17.8 K are measured as 0.847 mV, 1.691 mV, 2.529 mV, 3.720 mV, and 4.455 mV. Hence the V_{them} - ΔT curve is linearly fitted to be $V_{\text{them}} = 0.260\Delta T - 0.138$ (R² = 0.9995).

When the sensor is attached to a certain surface, the temperature difference in its out-of-plane direction is $\Delta T = T_m - T_0$, where T_0 is the temperature of the reference side, e.g. room temperature, and T_m is the temperature of the detected point. So the calculation formula of T_m can be derived as $T_m = 3.846V_{\text{them}} + T_0 + 0.533$.

Therefore, for the cross-plane sensor array, the temperature distribution of the detected surface can be concluded based on the measured V_{them} of each sensing unit.

	Bi (at.%)	Te (at.%)	Sb (at.%)	Se (at.%)
p-type	6.25	68.64	25.11	/
n-type	30.99	66.51	/	2.50

Table S1. Elemental compositions of p-type and n-type Bi_2Te_3 powders.

Element	Normalized mass	Atom ratio	Abs. error
	(%)	(%)	(%, 1 sigma)
С	24.68	59.99	1.25
Ο	8.59	15.69	0.42
S	13.89	12.64	0.40
Te	31.30	7.16	0.82
Sb	15.07	3.61	0.41
Bi	6.48	0.90	0.20

Table S2. FESEM-EDS elemental analysis for p-type 15 vol.%-Bi2Te3@PEDOT NW film.

Thickness of total Bi ₂ Te ₃	Thickness of PEDOT scaffold	Volume ratio
(µm)	(µm)	(vol.%)
2	20	9
3.52	20	15
5.48	20	21.5

Table S3. Component ratios of p-type Bi₂Te₃@PEDOT NW sandwich-like films.

Note: n-type 15 vol.%-Bi₂Te₃@PEDOT NW was prepared using the same parameters of thermally

depositing.

Organic	Inorganic	Method	S	PF	k	zT	Ref.
component	component						
PEDOT:PSS	Bi ₂ Te ₃	Electrodeposition	15.2	9.9	0.169	0.0172	1
	Bi ₂ Te ₃	Solution-mixing and	13.5	32.26	/	/	2
	nanosheet	drop casting					
	Bi ₂ Te ₃	Solution-mixing and	150	131	/	/	3
	particle	drop casting					
	Bi ₂ Te ₃	Solution-mixing and	18	10.6	/	/	4
	nanowire	drop casting					
	Bi ₂ Te ₃	Solution synthesis and	93.63	60.05	/	/	5
	nanobarbell	drop casting					
	Bi ₂ Te ₃	In situ synthesis and	24.5	7.45	0.047	0.048	6
	nanowire	drop casting					
	Bi ₂ Te ₃	Solution-mixing and	47	223	/	/	7
	nanowire	spin coating					
	Cu ₂ Se	Wet-chemical	50.8	270.3	0.25-	0.3	8
	nanowire	synthesis and drop			0.3		
		casting					
	Te nanorod	Solution-mixing and	163	70.9	0.22-	0.1	9
		drop casting			0.3		
	Te nanorod	Solution in-situ	114.97	284	0.22	0.39	10
		synthesis and H ₂ SO ₄ -					
		treatment					
	Te nanowire	Solution in-situ	180	35	0.16	0.066	11
		synthesis and drop					
		casting					

Table S4. Comparison of TE properties in this work with the data of organic/inorganic composite TE

 materials reported in the literature at room temperature.

S29

	SiC nanowire	Dilution-filtration and	20.3	128.3	0.23	0.17	12
		post-treatment					
	ZnO flower	Spin coating	21	0.4	/	/	13
PEDOT:Tos	Bi ₂ Te ₃	Lithography and	170	1350	0.7	0.58	14
	nanoparticles	vapor phase					
		polymerization					
PEDOT NW	Bi ₂ Te ₃	Solution-mixing and	10.08	7.49	/	/	15
	powder	vacuum filtration					
	Bi ₂ Te ₃	Solution-mixing and	10.8	9.06	/	/	15
	nanowire	vacuum filtration					
РЗНТ	Bi ₂ Te ₃	Solution-mixing and	86.9	13.6	/	/	16
	nanowire	drop casting					
PANI	SnS	In situ synthesis and	350	80	0.6	0.04	17
	nanosheet	hot pressing					
	Ag ₂ Se	In situ synthesis and	97	301.9	/	/	18
	nanowire	drop casting					
	SWNT/Te	In situ synthesis and	54	101	0.3	0.1	19
		vacuum filtration					
PVDF	PANI-coated	Solution-mixing and	85.6	196.6	/	/	18
	Ag ₂ Se	drop casting					
	nanowire						
SWCNT	Bi ₂ Te ₃	Magnetron sputtering	-147.5	163	0.19	0.25	20
	nanocrystal						
	Bi ₂ Te ₃	Magnetron sputtering	-153	215	0.28	0.23	21
	nanosheet						
	РРу	In-situ pulse	18	365.2	0.54	0.203	22
		electropolymerization					
	PPy/Te	Sequential pulse	80.9	1602.4	/	/	23

		electrodeposition					
РРу	Те	Electrodeposition	187.5	234.3	/	/	24
	nanocrystal						
	SWCNT	Solution-mixing and	27	240.3	/	/	25
		vacuum filtration					
	Ag ₂ Se/Se	Vacuum filtration and	144	2240	/	/	26
	nanostructure	hot pressing					
PEDOT NW	Bi ₂ Te ₃	High-vacuum thermal	266.4	740.1	0.82	0.27	This
	nanocrystal	evaporation and					work
		thermal-shock					

Note:

The units are $\mu V K^{-1}$, $\mu W m^{-1} K^{-2}$, and $W m^{-1} K^{-1}$ for *S*, *PF*, and κ , respectively.

Abbreviations in Table S4 and Fig. 3c and d.

Tos = tosylate; P3HT = poly-(3-hexyl)thiophene; PANI = polyaniline; PVDF = polyvinylidene difluoride; SWCNT = single-walled carbon nanotube; PPy = polypyrrole; P = powder; NB = nanobarbell; NC = nanocrystal; NR = nanorod; NS = nanosheet; NW = nanowire

ΔT (K)	S _p (μV K ⁻¹)	S_n (µV K ⁻¹)	Ν	Equation	V _{oc-th} (mV)	V _{oc-m} (mV)
3.6	266.4	-158.1	8		12.226	11.186
7.1	266.4	-158.1	8		24.112	21.772
10.9	266.4	-158.1	8	$V_{\rm oc} = (S_{\rm p} + S_{\rm n}) \times \Delta T \times N$	37.016	33.366
14.3	266.4	-158.1	8		48.563	44.038
17.8	266.4	-158.1	8		60.449	54.706
25	266.4	-158.1	8		84.900	76.962
30	266.4	-158.1	8		101.880	92.354
80	266.4	-158.1	8		271.680	246.278

Table S5. Theoretical and measured open-circuit voltage of the cross-plane TEG.

Note: ΔT is the temperature difference, S_p is the Seebeck coefficient of p-type TE leg, S_n is the Seebeck coefficient of n-type TE leg, N is the number of p-n pairs, V_{oc-th} is the theoretical open-circuit voltage calculated from the equation, and V_{oc-m} is the measured open-circuit voltage. The data under the ΔT of 25 K, 30 K, and 80 K is estimated.

	ΔT (K)	V _{oc-m} (mV)	V _{output-m} (mV)	r (Ω)	Equation	P _{total} (µW)	P _{max-output} (µW)	$P_{ ext{max-output}}/P_{ ext{total}}$
_	3.6	11.186	4.936	250		0.250	0.098	0.392
	7.1	21.772	10.465	250		0.948	0.438	0.462
	10.9	33.366	16.459	250	$P_{\rm max} = U^2/4r$	2.227	1.084	0.487
	14.3	44.038	21.770	250		3.879	1.896	0.489
	17.8	54.706	26.669	250		5.985	2.845	0.475
-	25	76.962	37.627	250		11.846	5.792	/
	30	92.354	45.152	250		17.059	8.340	/
	80	246.278	120.405	250		121.306	59.306	/

Table S6. Total power and the maximum output power of the cross-plane TEG.

Note: *R* is the external resistance, $V_{output-m}$ is the voltage of external resistance, P_{total} is the total power generated by the cross-plane TEG, and $P_{max-output}$ is the maximum output power of the cross-plane TEG. The data under the ΔT of 25 K, 30 K, and 80 K is estimated.

Table S7. The detailed data and calculating process of Fig. 5d.

Note: Abbreviations in Fig. 5d

CNT = carbon nanotube; CNTF = carbon nanotube fiber; CNTY = carbon nanotube yarn

Area of	Number	Output	ΔΤ	Output	Specific	TEG type	Ref
TEG	of TE	power	(K)	power	power		
(cm ²)	legs	(µW)		density	$(nW cm^{-2} K^{-2})$		
				(µW cm ⁻²)			
1.5*a1	24	0.224	15	0.149*a2	0.664	Inorganic textile	68
						based	
4*b1	16	0.009	25	2.25×10-	3.6×10-3	Organic textile	69
				³ *b2		based	
16	20	32*c1	20	2	5	Organic textile	70
						based	
5.59	24	26.553*d1	35	4.75	3.877	Inorganic non-	71
						textile based	
182.25	162	0.32	85.5	4.442×10-	2.4×10-4	Organic non-	39
				³ *e1		textile based	
4.8	80	2.02	20	0.421*f1	1.052	Organic non-	72
						textile based	
35.5*g1	56	0.2	40	0.0056*g2	3.52×10-3	Organic/inorgani	74
						c textile based	
74.4	1932	383.16*h1	47.5	5.15	2.283	Organic textile	75
						based	

Detailed data in References

4	10	7.16*i1	25	1.79	2.864	Organic textile	73
						based	
6.75	80	6.953*j1	30	1.03	1.144	Organic textile	76
						based	
10.8	72	5.415×10-	27.7	5.01×10-5	6.534×10 ⁻⁵	Organic textile	67
		⁴ *k1				based	

Calculation process of the table:

*a1 Calculated data: Fig. 5a presents the dimensions of the TEG with printed 12-couple are 25 mm × 6 mm.

*a2 Calculated data: Fig. 7 presents the output power 0.224 μ W at a ΔT of 15 K, so the output power density is about 0.149 μ W cm⁻² from calculating 0.224 μ W/(25 mm × 6 mm).

*b1 Calculated data: Fig. 5b presents the dimensions of the TEG are 2 cm \times 2 cm.

*b2 Calculated data: Fig. 6a presents the output power 0.009 μ W at a ΔT of 25 K, so the output power density is about 2.25×10⁻³ μ W cm⁻² from calculating 0.009 μ W/(2 cm × 2 cm).

*c1 Calculated data: Fig. 5a and e present the dimension and the output power density of the TEG.

*d1 Calculated data: Fig. 4a presents dimensions of the TEG are 43 mm × 13 mm. Fig. 5b presents an output power density of 4.75 μ W cm⁻² at a ΔT of 35 K.

*e1 Estimated data: Fig. 2b presents the TEG has dimensions of 18×9 elements. From the scale bar the dimensions of one element are about 15 mm \times 7.5 mm. So the areal of the TEG is calculated to be 182.25 cm². Fig. 3b presents the output power of the TEG is 0.32 μ W at a ΔT of 85.5 K.

*f1 Calculated data: Fig. 5a presents the TEG has dimensions of $4 \times 5 \times 120 \text{ mm}^3$. Fig. 5b presents the output power of the TEG is 2.02 μ W at a ΔT of 20 K.

*g1 Estimated data: The length of each TE fiber is about 91 mm and 4 TE fibers with 28 joints are woven into the fabric. So the length of one joint is about $91 \times 4 \div 28$. The dimensions of the TEG in Fig. 4b are about 9.1 cm \times 3.9 cm.

*g2 Calculated data: Fig. 4h presents the output power of the TEG with 4 fibers is 200 nW a ΔT of 40 K. So the output power density can be calculated from 200 nW/35.5 cm².

*h1 Calculated data: Fig. 4b presents the dimension of the TEG are 9.3 cm \times 8 cm. Fig. 4h presents an output power density of 5.15 μ W cm⁻² at a ΔT of 47.5 K.

*i1 Estimated data: Fig. 6a presents the dimension of the TEG are about 2 cm \times 2 cm. Fig. 6c presents an output power density of 1.79 μ W cm⁻² at a ΔT of 25 K.

*j1 Calculated data: Fig. 4b presents the dimension of the TEG are about 4.5 cm \times 1.5 cm. Fig. 4f presents an output power density of 10.3 mW m⁻² at a ΔT of 30 K.

*k1 Fig. 5b presents the dimension of the TEG are 3.6 cm \times 3 cm. Fig. 5g presents an output power density 501.35 nW m⁻² at a ΔT of 27.7 K.

Calculation process of the density of TE legs in various cross-section TEGs:

Density of TE legs = Number of TE legs/Area of TEG

Supplementary references

- 1. Q. Jiang, C. Liu, H. Song, J. Xu and Z. Zhu, Int. J. Electrochem. Sci., 2014, 9, 7540-7551.
- 2. Y. Du, K. F. Cai, S. Chen, P. Cizek and T. Lin, ACS Appl. Mater. Interfaces, 2014, 6, 5735–5743.
- B. Zhang, J. Sun, H. E. Katz, F. Fang and R. L. Opila, *ACS Appl. Mater. Interfaces*, 2010, 2, 3170-3178.
- J. Xiong, L. Wang, J. Xu, C. Liu, W. Zhou, H. Shi, Q. Jiang and F. Jiang, *J. Mater. Sci.: Mater. Electron.*, 2016, 27, 1769-1776.
- Y. H. K. Eun Jin Bae, Kwang-Suk Jang, Changjin Lee and Song Yun Cho, E. J. Bae, Y. H. Kang, K. S. Jang, C. Lee and S. Y. Cho, *Nanoscale*, 2016, 8, 10885-10890.
- W. Thongkham, C. Lertsatitthanakorn, K. Jiramitmongkon, K. Tantisantisom, T. Boonkoom,
 M. Jitpukdee, K. Sinthiptharakoon, A. Klamchuen, M. Liangruksa and P. Khanchaitit, ACS Appl. Mater. Interfaces, 2019, 11, 6624–6633.
- W. S. Kim, G. Anoop, I. S. Jeong, H. J. Lee, H. B. Kim, S. H. Kim, G. W. Goo, H. Lee, H. J. Lee,
 C. Kim, J. H. Lee, B. S. Mun, J. W. Park, E. Lee and J. Y. Jo, *Nano Energy*, 2020, 67, 10427.
- Y. Lu, Y. Ding, Y. Qiu, K. Cai, Q. Yao, H. Song, L. Tong, J. He and L. Chen, ACS Appl. Mater. Interfaces, 2019, 11, 12819-12829.
- K. C. See, J. P. Feser, C. E. Chen, A. Majumdar, J. J. Urban and R. A. Segalman, *Nano Lett.*, 2010, 10, 4664-4667.
- 10. E. J. Bae, Y. H. Kang, K. S. Jang and S. Y. Cho, *Scientific reports*, 2016, 6, 18805.
- N. E. Coates, S. K. Yee, B. McCulloch, K. C. See, A. Majumdar, R. A. Segalman and J. J. Urban, *Adv. Mater.*, 2013, 25, 1629-1633.

- X. Wang, F. Meng, T. Wang, C. Li, H. Tang, Z. Gao, S. Li, F. Jiang and J. Xu, *J. Alloys Compd.*, 2018, **734**, 121-129.
- 13. Y. Du, K. Cai, S. Z. Shen, W. Yang, J. Xu and T. Lin, *Journal of Materials Science Materials in Electronics*, 2016, **27**, 10289-10293.
- L. Wang, Z. Zhang, Y. Liu, B. Wang, F. Lei, J. Qiu, K. Zhang and S. Wang, *Nat. Commun.*, 2018.
- Z. Tian, H. Liu, N. Wang, Y. Liu and X. Zhang, J. Mater. Sci.: Mater. Electron., 2018, 29, 17367–17373.
- 16. M. He, J. Ge, Z. Lin, X. Feng, X. Wang, H. Lu, Y. Yang and F. Qiu, *Energy & Environmental Science*, 2012, **5**, 8351-8358.
- 17. H. Ju, D. Park and J. Kim, Chem. Eng. J., 2018, 356.
- 18. D. Park, M. Kim and J. Kim, J. Alloys Compd., 2021, 884, 161098.
- 19. L. Wang, Q. Yao, W. Shi, S. Qu and L. Chen, *Materials Chemistry Frontiers*, 2017, 1, 741-748.
- 20. Y. Zhao, Y. Li, J. Qiao, S. Jiang and C. Liu, *Carbon*, 2020, **170**, 191-198.
- Y. Li, J. Qiao, Y. Zhao, Q. Lan and H. Cheng, *Journal of Materials Science and Technology*, 2020, 58, 80-85.
- 22. Y. Li, C. Gao, X. Fan and L. Yang, Chem. Eng. J., 2022, 443, 136536.
- 23. Y. Li, C. Gao, X. Fan, H. Li and L. Yang, Advanced Materials Technologies, 2023, 2201544.
- 24. Y. Li, C. Gao, X. Fan and L. Yang, ACS Appl. Mater. Interfaces, 2022, 14, 10815-10824.
- W. Fan, Y. Zhang, C. Y. Guo and G. Chen, *Composites Science and Technology*, 2019, 183, 107794.107791-107794.107795.
- 26. Y. Li, Q. Lou, J. Yang, K. Cai, Y. Liu, Y. Lu, Y. Qiu, Y. Lu, Z. Wang, M. Wu, J. He and S. Shen,

Adv. Funct. Mater., 2021, **32**, 2106902.