Electronic supplementary information for

Sodium ion doped graphitic carbon nitride with high

crystallinity for superior photocatalytic hydrogen evolution

efficiency

Xue Han, Yuna kang, Shuang Song, Rong Lu* and Anchi Yu *

Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China

Additional figures:

Fig. S1 High resolution TEM images of GCN (a), GCN-Na (b) and GCN-Na-NH₄Cl (c-f).

Fig. S2 BET nitrogen adsorption/desorption isotherms for GCN, GCN-Na and GCN-Na-NH₄Cl. Inset shows their BET specific surface areas.

Fig. S3 XRD patterns (a) and photocatalytic H_2 evolution rates (b) of GCN and GCN-Na-NH₄Cl with different NH₄Cl loadings; XRD patterns (c) and photocatalytic H_2 evolution rates (d) of GCN and GCN-Na with different NaCl loadings; XRD patterns (e) and photocatalytic H_2 evolution rates (f) of GCN and GCN-NH₄Cl with different NH₄Cl loadings.

Fig. S4 Stability test of photocatalytic H_2 evolution (a) for GCN-Na-NH₄Cl under visible light irradiation; XRD patterns (b), FTIR spectra (c), and DRS spectra (d) for GCN-Na-NH₄Cl before and after photocatalytic H_2 evolution.

Fig. S5 Element mapping images of GCN (a), GCN-Na (b) and GCN-Na-NH₄Cl (c).

Fig. S6 XPS survey spectra of GCN, GCN-Na and GCN-Na-NH₄Cl.

Fig. S7 Femtosecond transient absorption spectra of GCN (a), GCN-Na (b), and GCN-Na-NH₄Cl (c) aqueous dispersions at various time delays under pump density of 50 μ J/cm². The pump wavelength is 398 nm.

Fig. S8 Normalized transient absorption kinetic traces of GCN-Na (a) and GCN-Na-NH₄Cl (b) aqueous dispersions at various probe wavelengths under pump density of 50 μ J/cm². The pump wavelength is 398 nm. The coherence spikes at ~200 fs time delay come from water solvent. The solid line is the fitting curve with a combination function of a stretched-exponential decay function and a single exponential decay function. The fitting function with one set of fitting parameters could fit all the transient absorption kinetic traces of GCN-Na at various probe wavelengths. Similarly, the fitting function with one set of fitting parameters could also fit all the transient absorption kinetic traces of GCN-Na at various probe wavelengths.

Additional tables:

_	Table D1 Elemental ee	Elemental compositions determined by SEW EDS.						
	Sample	C/N	O (at. %)	Na (at. %)				
	GCN	0.69	2.7±0.56					
	GCN-Na	0.75	4.5±0.65	4.7±0.95				
	GCN-Na-NH ₄ Cl	0.67	4.4±0.63	5.4±1.80				

 Table S1 Elemental compositions determined by SEM-EDS.

Table S2 Elemental compositions determined by XPS.									
Sample	C 1s	N 1s	O 1s	Na 1s	Br 3d	Cl 2p			
-	(at. %)								
GCN	45.65	51.27	3.08						
GCN-Na	47.37	44.52	4.05	4.02	0.04				
GCN-Na-NH ₄ Cl	46.03	45.44	4.67	3.74	0.02	0.09			

 Table S2 Elemental compositions determined by XPS.