Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Journal of Materials Chemistry A

Electronic Supplementary Information

Cyanobacteria-based double-mediated photo-microbial electrochemical cells are promising future energy sources for electricity generation and hydrogen production

Youngrok Lee,^{‡a} Jinhwan Lee,^{‡b} and Sunghyun Kim*^a

^a Department of Systems Biotechnology, Konkuk Institute of Science and

Technology, Konkuk University, 120 Neudong-ro, Gwangjin-gu, Seoul 05029, Korea

^b A&M Co. Lt. C-216, 01 Jinju-daero, Jinju-si, Gyeongsangnam-do 52828, Korea

* Corresponding author

Email: skim100@konkuk.ac.kr

Tel: +82(0)2 450 3378

Supplementary figures

Figure S1. Comparison of oxygen evolution rates from *A. variabilis* depending on single and double mediator. The solution contained 1X BG11 medium and 50 mM HEPES buffer (pH 7.5) and was stirred at 750 rpm. Temperature = 28 °C.

Figure S2. Lighting an LED and operating an electronic calculator using five series-connected DM-PMECs.

Figure S3. Series connection of five DM-PMECs for lighting a light-emitting diode.

Figure S4. Photocurrent and anode potential change with time in a DM-PMEC operated in a two-electrode system when external voltage of 1 V was applied. Anodic chamber (12 mL) and cathodic chamber (14 mL) were separated by a Nafion membrane. Anolyte composition: 30 μ g Chla mL⁻¹ of *A. variabilis*, 2 mM DMBQ, and 15 mM ferricyanide in 100 mM HEPES buffer (pH 7.5). Anode area: 32 cm². Cathode area: 4.85 cm². Light source: LED lamp (model: PS102, LANICS. CO. Ltd). Light intensity: ~719.3 μ mol s⁻¹ m⁻² (ca. 35.9 mW cm⁻²). The anolyte was purged by high-purity argon gas. The anode potential was measured by an Ag/AgCl electrode.

Calculation of total input energy (W_{in})

 $W_{\rm in}$ is calculated from the photocurrent density vs. time curve as follows.

Figure S5. The curve is divided into n sections with an equal time interval Δt . The area of each section represents charge Q_i . Energy is given by $Q_i \times E_i$ where E_i is the potential measured for each section. It is assumed that E_i is constant in the time interval Δt . Total input energy (W_{in}) is then the sum of the energy at each section.

$$W_{in} = \sum_{i=1}^{n} W_i = \sum_{i=1}^{n} Q_i E_i$$

Figure S6. Photocurrent dependence on the light intensity in a DM-PMEC containing *A. variabilis* (30 mg Chla mL⁻¹). Current was measured in a chronoamperometric mode at 0.4 V vs. Ag/AgCl. Electrode area = 16.6 cm^2 .

WE: Working electrode CE: Counter electrode

Figure S7. The dual-functioning electrochemical cell that measures oxygen evolution and photocurrent simultaneously. Light illuminates the cell from the top.