

Supporting Information

Selective Conversion of CO₂ to CH₄ Enhanced by WO₃/In₂O₃ S-scheme

Heterojunction Photocatalyst with Efficient CO₂ Activation

Ying He,^a Zhengpeng Yang,^a Jiaguo Yu,^a Difa Xu,^b Chengyuan Liu,^c Yang Pan,^c Wojciech Macyk,^d and Feiyan Xu^{a,}*

^a Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, P. R. China

^b Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha, 410022, P. R. China

^c National synchrotron radiation laboratory, University of science and technology of China, Hefei, 230026, P. R. China

^d Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, Kraków 30–387, Poland

* E-mail: xufeiyang@cug.edu.cn

1. Experimental section

1.1 *Chemicals*

Sodium tungstate dehydrate ($\text{Na}_2\text{WO}_4 \cdot 2\text{H}_2\text{O}$) and tetrafluoroboric acid (HBF_4 , 40 wt.%) were obtained from Shanghai Aladdin biochemical technology Co., Ltd. Indium nitrate ($\text{In}(\text{NO}_3)_3 \cdot 4\text{H}_2\text{O}$) was purchased from Macklin Reagent Co., Ltd. All the chemicals were of analytical grade and used without further purification.

1.2 *Characterizations*

The X-Ray diffraction (XRD) patterns of as-obtained catalysts were recorded using a Shimadzu XRD-6100 X-ray diffractometer (Japan) with $\text{Cu K}\alpha$ radiation. Field emission scanning electron microscope (FESEM) images were characterized *via* JSM 7500F. Transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and the corresponding energy-dispersive X-ray spectroscopy (EDX) mapping were studied by Talos F200S. The light absorption spectra of the prepared samples were obtained using a Shimadzu UV-2600 UV-visible spectrophotometer (Japan). The surface electronic states of the samples were determined by X-ray photoelectron spectroscopy (XPS) *via* a Thermo Scientific ESCALA 210 XPS spectrometer system (USA) with 300 W $\text{Al K}\alpha$ radiation. *In-situ* XPS measurements were performed under the same condition, except for the introduction of light irradiation. The binding energies were referenced to the C 1s peak at 284.8 eV from adventitious carbon. The contact potential difference (CPD) was recorded on a kelvin probe apparatus (Instytut Fotonowy, Poland).

And the work function of the probe is calibrated to be 4.25 eV by the gold tip as a standard reference surface. The carbon dioxide temperature-programmed desorption (CO₂-TPD) test was investigated on an BELCAT II (Microtrac MRB).

In-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) were acquired on the Nicolet iS50 spectrometer (Thermo Scientific, USA). Time-resolved photoluminescence (TRPL) spectra were collected on a fluorescence lifetime spectrophotometer (FLS 1000, Edinburgh, UK) with an excitation wavelength of 375 nm.

The average lifetime (τ_a) can be calculated according to the following equation:

$$\tau_a = \frac{A_1\tau_1^2 + A_2\tau_2^2 + A_3\tau_3^2}{A_1\tau_1 + A_2\tau_2 + A_3\tau_3} \quad (1)$$

where τ_1 represents the lifetime of radiative recombination process, τ_2 and τ_3 stand for the lifetime of non-radiative recombination and energy transfer process, respectively. A_1 , A_2 and A_3 are the preexponential factors of decay curves.

Electrochemical measurements were conducted using a standard three-electrode system on an electrochemical workstation (CHI660C, China) in 50 mL of electrolyte containing 0.5 M Na₂SO₄. Pt wire (1.0 cm²) and Ag/AgCl (filled with saturated KCl) were worked as the counter and reference electrodes, respectively. For the working electrode, a slurry was prepared by dispersing 20 mg of catalyst in 1.0 mL of ethanol and 10 μ L of Nafion solution to make slurry, and then coated onto the conductive surface of FTO glasses with an active area of about 1.0 cm². The electrode was finally dried in an oven at 60 °C for 1 h.

1.3 Photocatalytic CO₂ reduction

The photocatalytic CO₂ reduction was carried out in an online gas-closed system equipped with a gas-circulated pump (OLPCRS-2, Shanghai Boyi Scientific Instrument Co., Ltd.). Typically, 50 mg of photocatalysts and 1 mL of H₂O were added in a Quartz and Pyrex glass hybrid reactor connecting to the CO₂ photoreduction system. The air-tight system was completely evacuated by using a vacuum pump, after which about 70 kPa of high-purity CO₂ (99.999%) gas was injected. Once achieving adsorption equilibrium, a 300 W Xe arc lamp with a 420 nm cut-off filter (Microsolar 300 Xenon lamp source, Beijing Perfectlight, China) was used as the light source. The photocatalytic CO₂ reduction products were analyzed using a gas chromatograph (GC-2030, Shimadzu Corp., Japan) equipped with barrier discharge ionization detector (BID) and a capillary column (Carboxen 1010 PLOT Capillary, 60 m × 0.53 mm). The apparent quantum efficiency (AQE) of the products over WI10 was calculated as follows:

$$\begin{aligned}
 \text{AQE}(\%) &= \frac{\text{number of reacted electrons}}{\text{number of incident photons}} \times 100 \\
 &= \frac{\text{number of CO molecules} \times 2 + \text{number of CH}_4 \text{ molecules} \times 8}{\text{number of incident photons}} \times 100 \\
 &= \frac{(2 \times R_{\text{CO}} + 8 \times R_{\text{CH}_4}) \times t_1 \times N_A}{P \times t_2 \times \frac{\lambda}{hc}} \times 100
 \end{aligned} \tag{2}$$

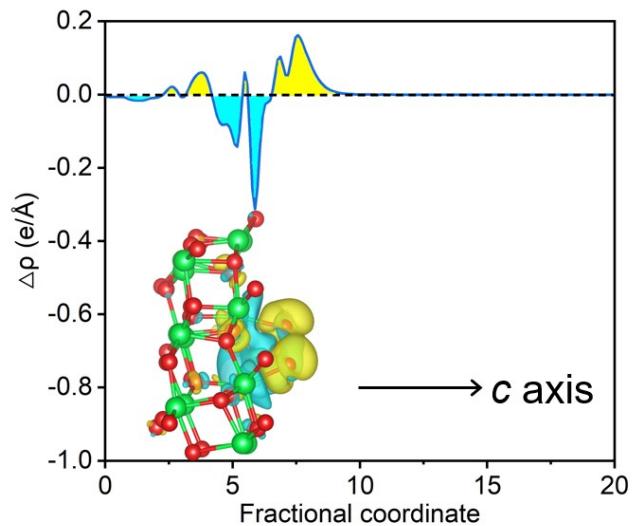
where R_{CO} and R_{CH_4} are the CO and CH₄ production rate (mol h⁻¹); t_1 is the irradiation time (1 h); N_A is Avogadro constant (6.02×10^{23} mol⁻¹); P is the total incident light flux (W, J s⁻¹) and equals light intensity per unit area (E , W cm⁻²) times effective irradiation area (S , cm²), where E can be measured by the radiant power energy meter (UV-A and FZ-A, Photoelectric Instrument Factory of Beijing Normal University), S is 4.5 cm² in this

experiment; t_2 equals 3600 s; λ is the monochromatic light wavelength(m); h is the Planck constant (6.626×10^{-34} J s) and c is the light speed in vacuum (3×10^8 m s $^{-1}$).

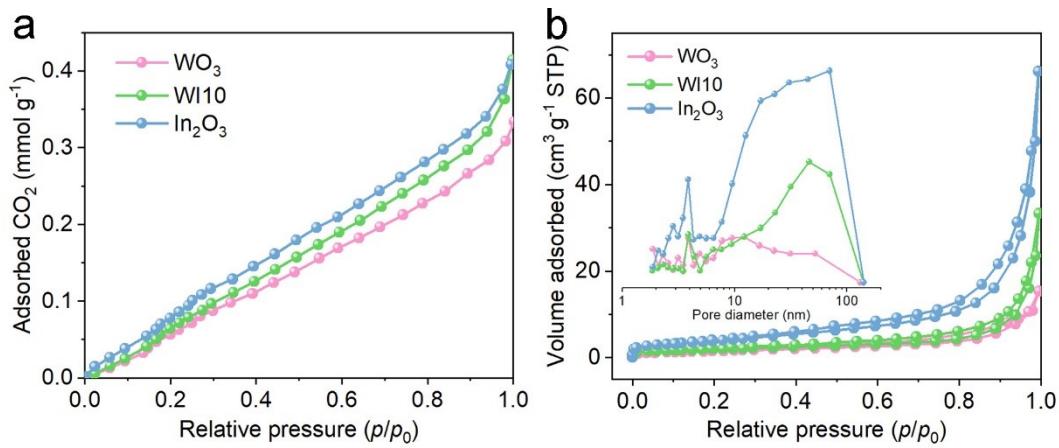
Moreover, the selectivity of products was calculated by the following equation:

$$\text{selectivity of product } C_i(\%) = \frac{\text{yield rate of } C_i (\mu\text{mol h}^{-1})}{\text{total yield rates of all products}} \times 100 \quad (3)$$

where C_i represents the reduction products including CO and CH₄.


Synchrotron-radiation vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) was carried out at the combustion endstation of the BL03U beamline at the National Synchrotron Radiation Laboratory.

1.4 Computational details


The periodic DFT calculations were performed by using Vienna Ab-initio Simulation Package (VASP).¹ The exchange correlation between electrons was treated using the generalized gradient approximation (GGA) in the Perdew–Burke–Ernzerhof (PBE) form.²⁻³ A (1×1) supercell of In₂O₃ (111) and a (2×2) supercell of WO₃ (001) surface slabs were adopted, where the half bottom atomic layers were fixed for all calculations. To avoid interactions between periodic structures, ~20 Å vacuum space was inserted. The cutoff energy was chosen at 520 eV, and the Brillouin zone was sampled using k -point spacing of 0.02 Å⁻¹.⁴⁻⁶ The convergence thresholds for energy and atomic forces were set as 10⁻⁵ eV and 0.02 eV Å⁻¹, respectively. The van der Waals interaction between adsorbate and slab was corrected with the DFT-D3(BJ) method.⁷⁻⁸

The free energy (G) for each isolated or adsorbed molecule was calculated at 298.15 K with zero-point energy (ZPE) correction. The formula is $G = E + \text{ZPE} - TS$, where E is the electronic energy calculated with VASP, ZPE is the zero-point energy and TS is the entropy contribution. The work function (Φ) of In_2O_3 (111) and WO_3 (001) slabs were calculated according to the formula of $\Phi = E_V - E_F$, where E_V and E_F stand for the vacuum energy level and Fermi level of the slabs, respectively.

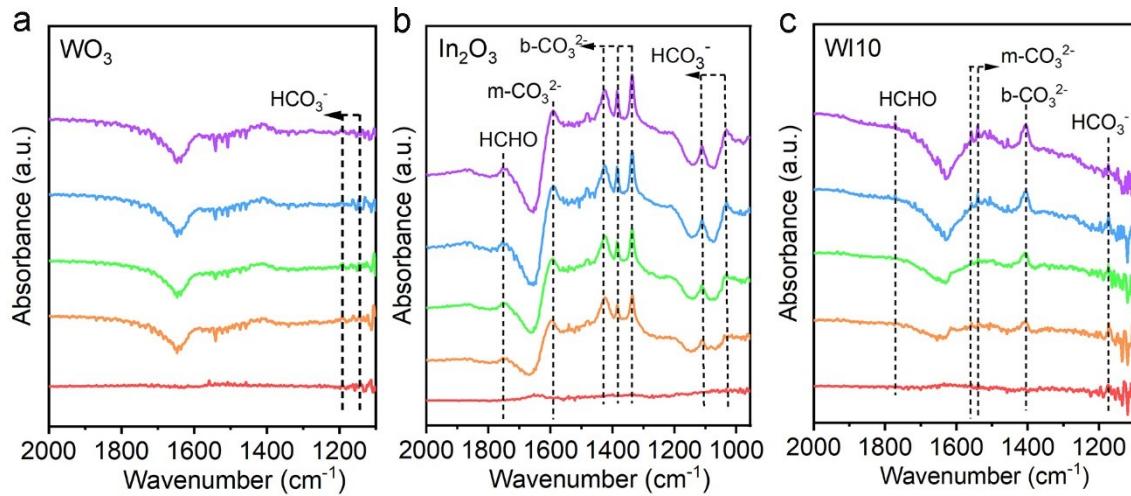

2. Supporting Figures

Fig. S1 Planar-averaged electron density difference $\Delta\rho$ of CO_2 absorbed on In_2O_3 . Cyan and yellow areas indicate electron depletion and accumulation, respectively.

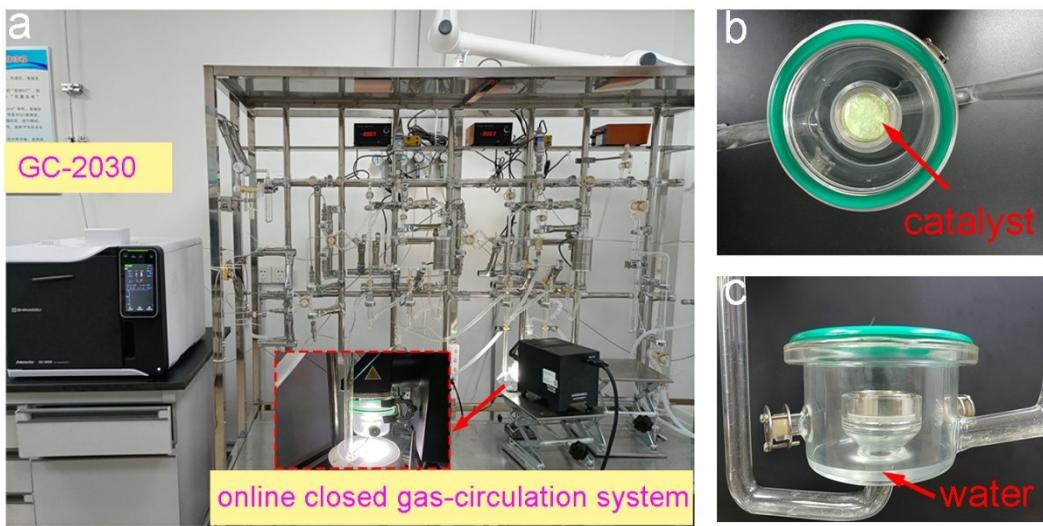


Fig. S2 (a) CO_2 adsorption isotherms, (b) nitrogen adsorption-desorption isotherms and the corresponding pore size distribution (inset) of WO_3 , WI10 and In_2O_3 . WI10 represents the $\text{WO}_3/\text{In}_2\text{O}_3$ heterojunctions, where W and I represent WO_3 and In_2O_3 , respectively; 10 is the molar ratios of In_2O_3 in $\text{WO}_3/\text{In}_2\text{O}_3$ composites.

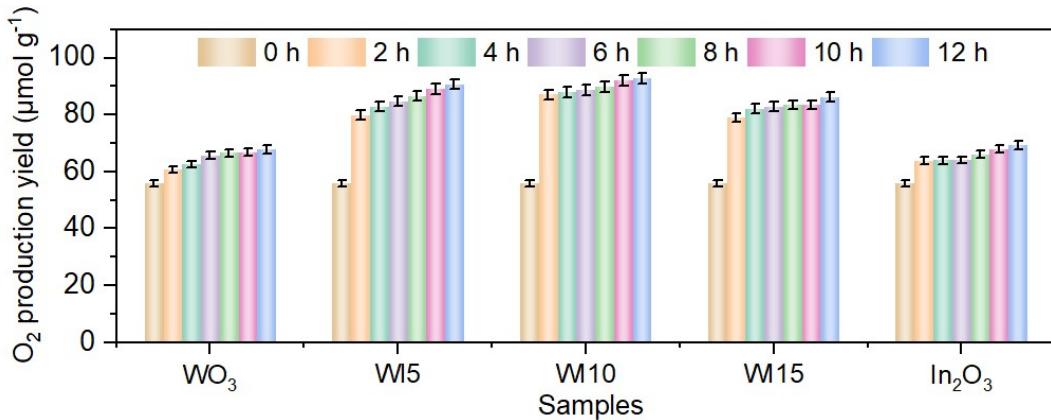


Fig. S3 *In-situ* DRIFT spectra of (a) WO_3 , (b) In_2O_3 and (c) WI10 after adsorption of CO_2

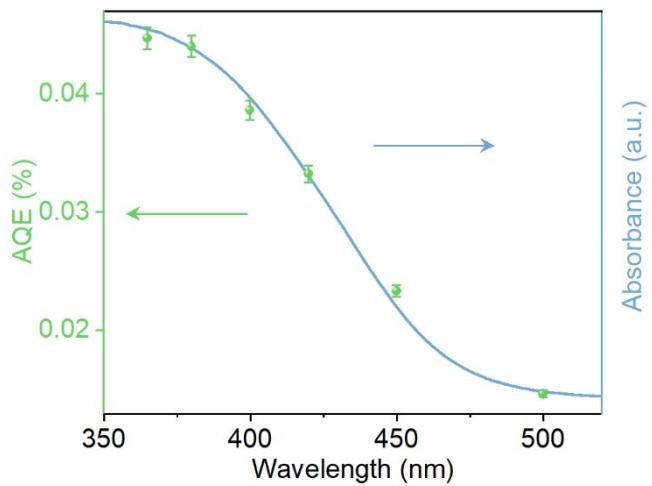

for 15, 30, 45 and 60 min in dark. WI10 represents the $\text{WO}_3/\text{In}_2\text{O}_3$ heterojunctions, where W and I represent WO_3 and In_2O_3 , respectively; 10 is the molar ratios of In_2O_3 in $\text{WO}_3/\text{In}_2\text{O}_3$ composites.

Fig. S4 (a) The online closed gas-circulation system and (b) the quartz reactor for photocatalytic CO_2 reduction.

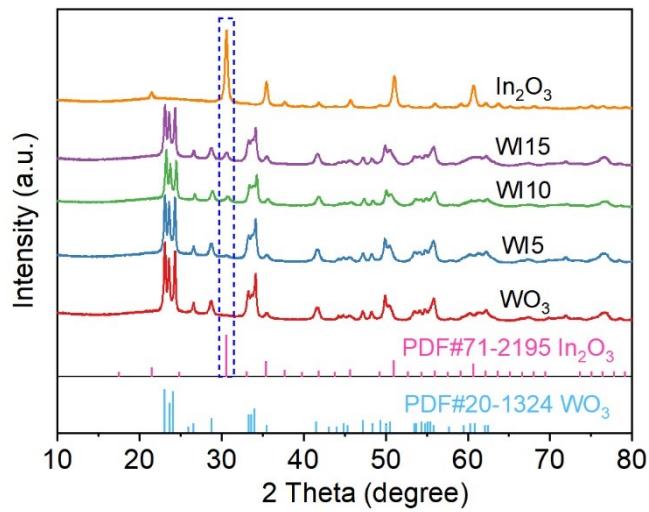


Fig. S5 O₂ production yield over WO₃, WIx, and In₂O₃ during 12-h experiment performed under visible light irradiation. The initial O₂ comes from the input high-purity CO₂ (99.999%), and its concentrations were normalized. WIx represents the WO₃/In₂O₃ heterojunctions, where W and I represent WO₃ and In₂O₃, respectively; x is the molar ratios of In₂O₃ in WO₃/In₂O₃ composites.

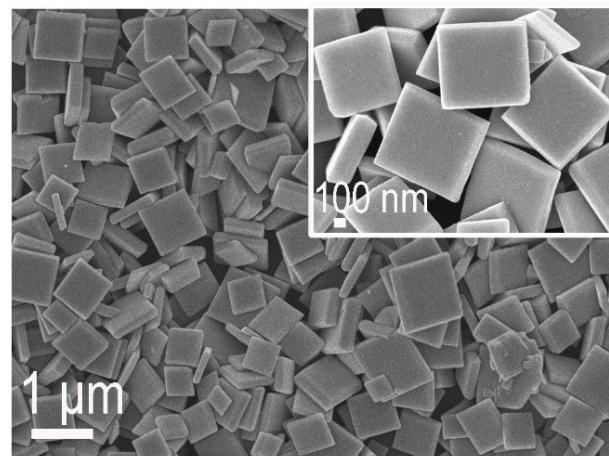


Fig. S6 Wavelength-dependent AQE and the UV-vis absorption spectrum of WI10 sample.

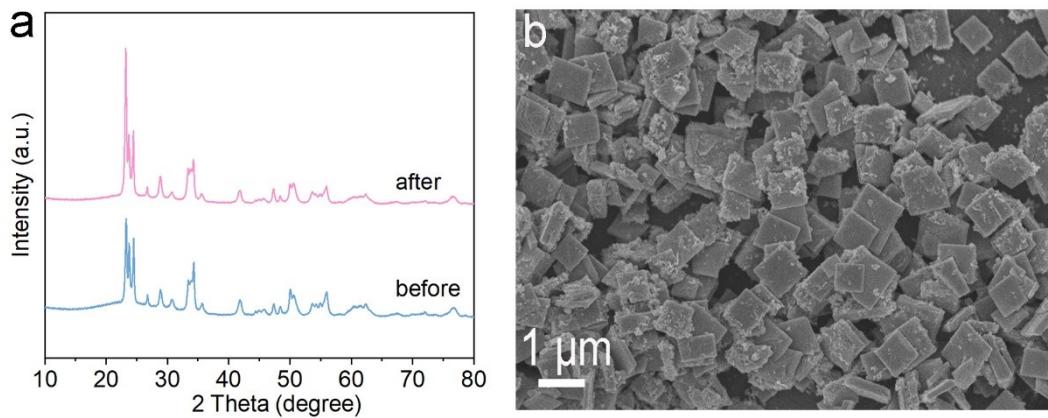

WI10 represents the $\text{WO}_3/\text{In}_2\text{O}_3$ heterojunctions, where W and I represent WO_3 and In_2O_3 , respectively; 10 is the molar ratios of In_2O_3 in $\text{WO}_3/\text{In}_2\text{O}_3$ composites.

Fig. S7 XRD patterns of WO_3 , In_2O_3 and WI_x . WI_x represents the $\text{WO}_3/\text{In}_2\text{O}_3$ heterojunctions, where W and I represent WO_3 and In_2O_3 , respectively; x is the molar ratios of In_2O_3 in $\text{WO}_3/\text{In}_2\text{O}_3$ composites.

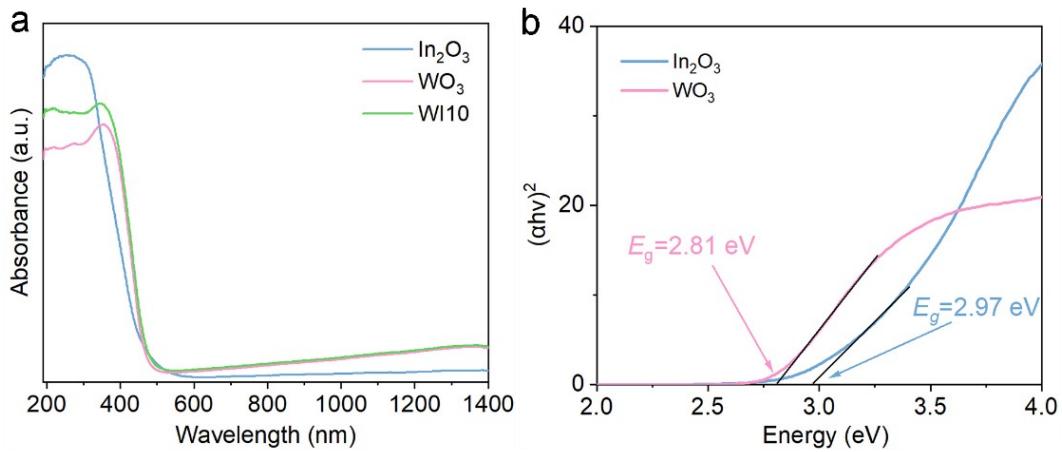


Fig. S8 FESEM image of precursor $\text{WO}_3 \cdot \text{H}_2\text{O}$.

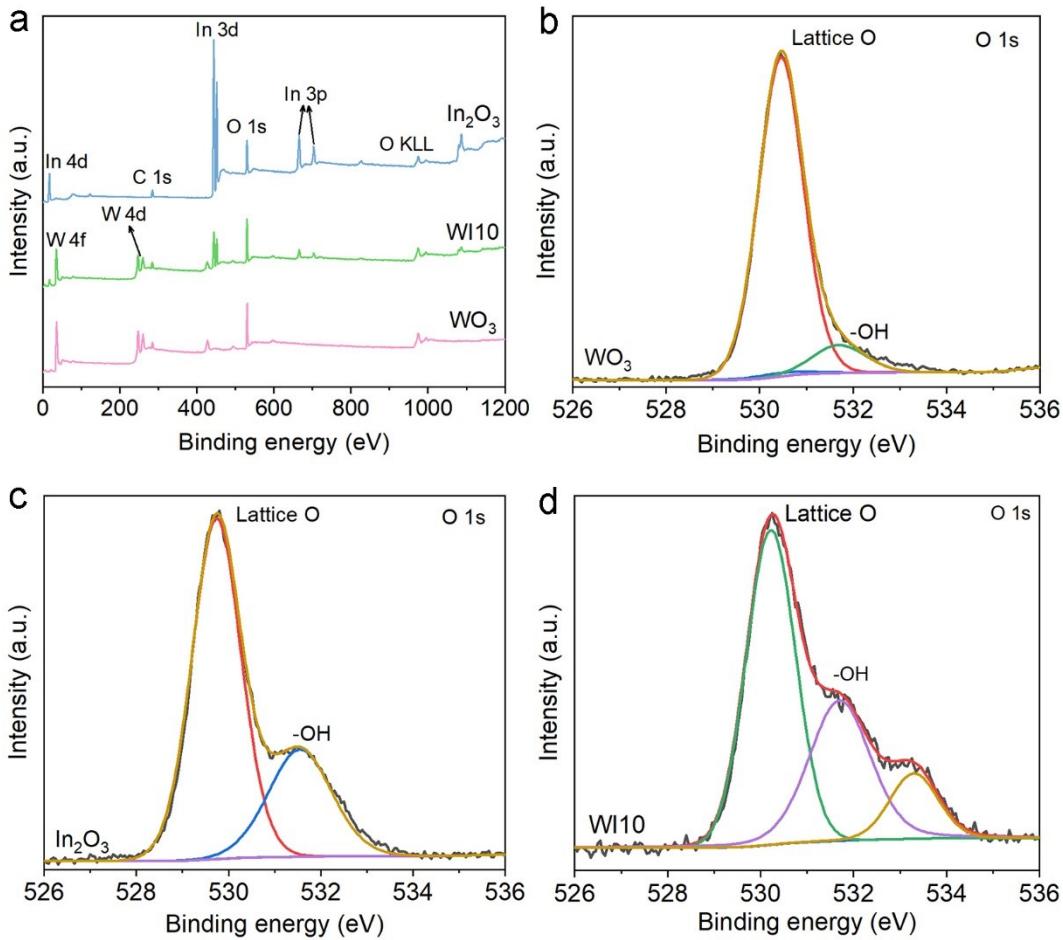


Fig. S9 (a) XRD pattern and (b) FESEM image of WI10 after photocatalytic reactions.

WI10 represents the $\text{WO}_3/\text{In}_2\text{O}_3$ heterojunctions, where W and I represent WO_3 and In_2O_3 , respectively; 10 is the molar ratios of In_2O_3 in $\text{WO}_3/\text{In}_2\text{O}_3$ composites.

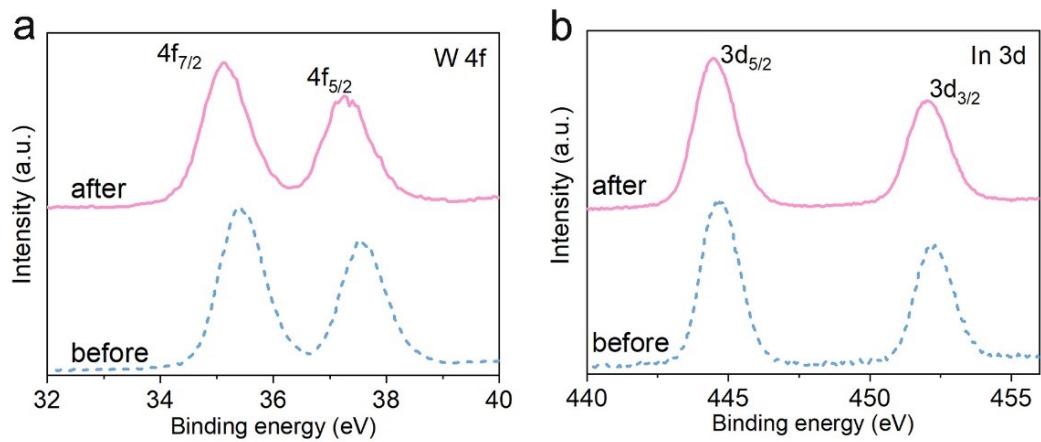


Fig. S10 (a) UV-vis spectra of WO_3 , In_2O_3 and WI10, (b) Kubelka-Munk plots of WO_3 and In_2O_3 . WI10 represents the $\text{WO}_3/\text{In}_2\text{O}_3$ heterojunctions, where W and I represent WO_3 and In_2O_3 , respectively; 10 indicates the molar ratios of In_2O_3 in $\text{WO}_3/\text{In}_2\text{O}_3$ composites.

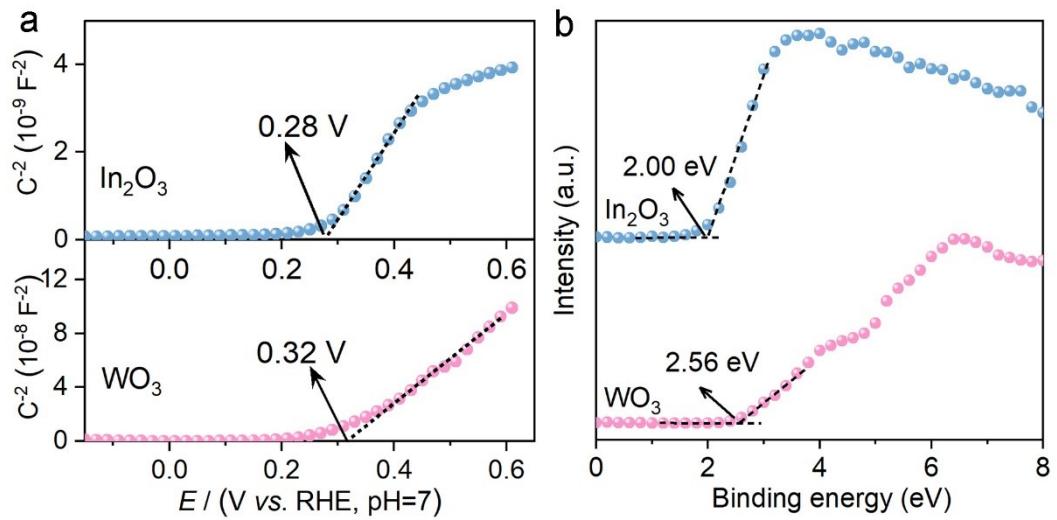
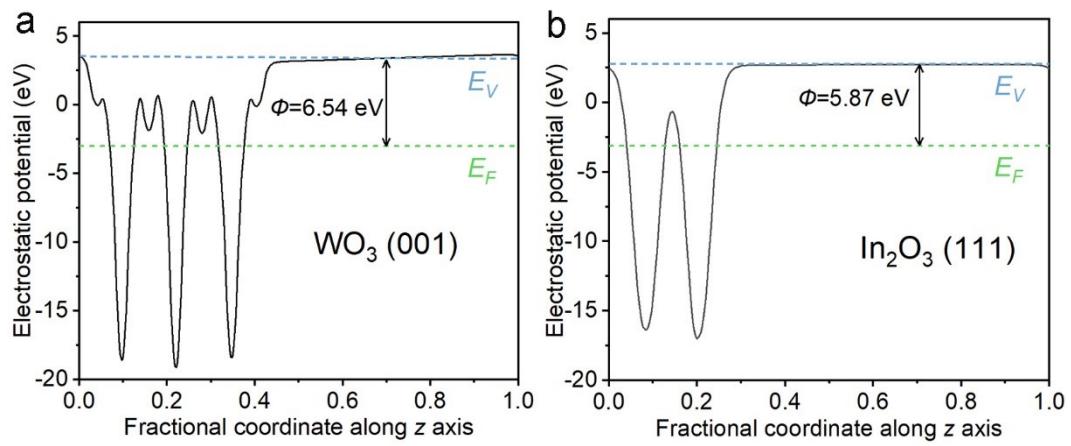
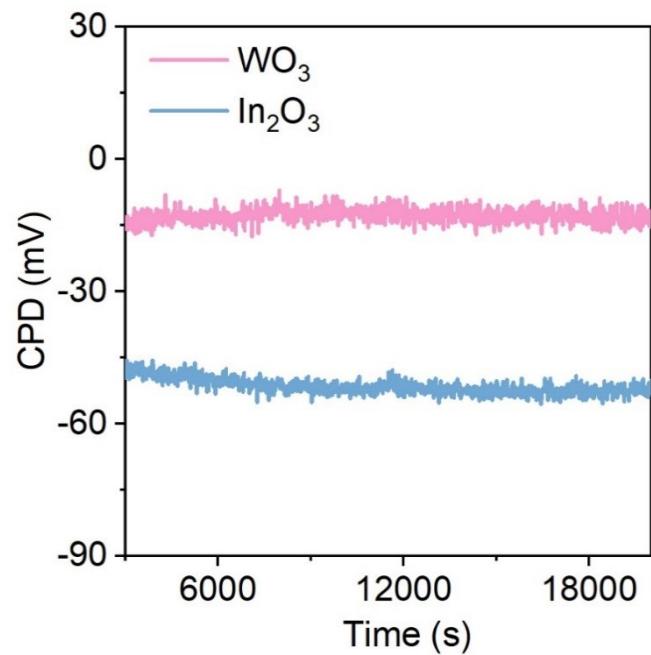


Fig. S11 (a) XPS survey spectra, XPS spectra of O 1s of (b) WO₃, (c) In₂O₃, and (d) WI10.


WI10 represents the WO₃/In₂O₃ heterojunctions, where W and I represent WO₃ and In₂O₃, respectively; 10 indicates the molar ratios of In₂O₃ in WO₃/In₂O₃ composites.


Fig. S12 XPS spectra of (a) W 4f and (b) In 3d of WI10 before and after photocatalytic reactions. WI10 represents the $\text{WO}_3/\text{In}_2\text{O}_3$ heterojunctions, where W and I represent WO_3 and In_2O_3 , respectively; 10 is the molar ratios of In_2O_3 in $\text{WO}_3/\text{In}_2\text{O}_3$ composites.

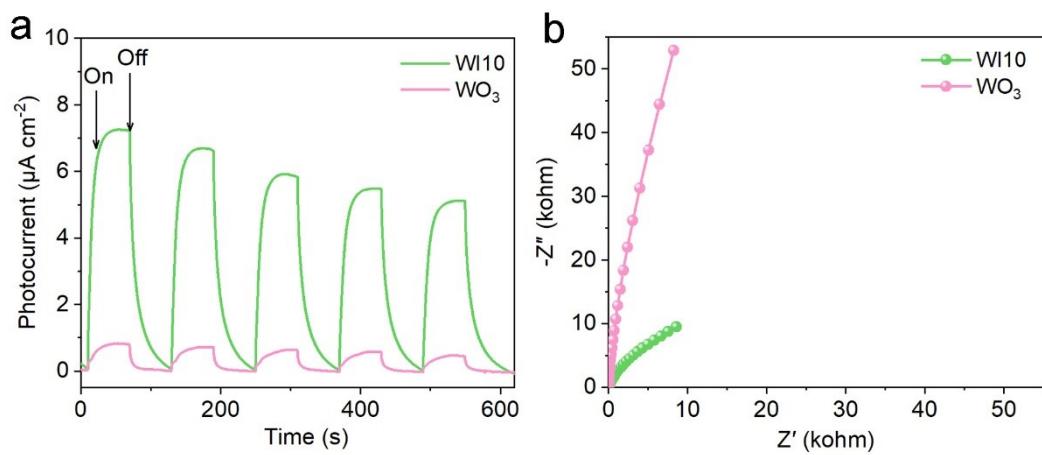

Fig. S13 (a) Mott–Schottky plots and (b) valence band XPS spectra of WO_3 and In_2O_3 .

Fig. S14 Calculated electrostatic potentials of (a) WO_3 (001) and (b) In_2O_3 (111) slabs.

Fig. S15 CPD profile of WO_3 and In_2O_3 in the dark.

Fig. S16 (a) Transient photocurrent response and (b) Nyquist plots of WO₃ and WI10.

WI10 represents the WO₃/In₂O₃ heterojunctions, where W and I represent WO₃ and In₂O₃, respectively; *10* indicates the molar ratios of In₂O₃ in WO₃/In₂O₃ composites.

3. Supporting Tables

Table S1. Physical properties of WO_3 , WI10 and In_2O_3 . WI10 represents the $\text{WO}_3/\text{In}_2\text{O}_3$ heterojunctions, where W and I represent WO_3 and In_2O_3 , respectively; 10 is the molar ratios of In_2O_3 in $\text{WO}_3/\text{In}_2\text{O}_3$ composites.

Sample	S_{BET} (m ² /g)	V_p (cm ³ /g)	d_p (nm)
WO₃	6	0	15.2
WI10	7	0.1	23.8
In₂O₃	15	0.1	24.7

Table S2. The calculated AQE at different monochromatic wavelengths over the WI10 sample. WI10 represents the $\text{WO}_3/\text{In}_2\text{O}_3$ heterojunctions, where W and I represent WO_3 and In_2O_3 , respectively; 10 is the molar ratios of In_2O_3 in $\text{WO}_3/\text{In}_2\text{O}_3$ composites.

λ (nm)	365	380	400	420	450	500
E (mW/cm ²)	14	15	17	14	20	12
M_{CO} (ppm)	7.71	3.56	4.21	3.72	3.47	0.00
R_{CO} (μmol/h)	0.0026	0.0012	0.0014	0.0013	0.0012	0.0000
M_{CH_4} (ppm)	3.75	5.35	5.48	3.93	4.35	2.18
R_{CH_4} (μmol/h)	0.0013	0.0018	0.0019	0.0013	0.0015	0.0007
)					
AQE (%)	0.0447	0.0440	0.0386	0.0332	0.0233	0.0146

Table S3. The fitted lifetimes obtained from decay curves of WO_3 and WI10 in different atmospheres. WI10 represents the $\text{WO}_3/\text{In}_2\text{O}_3$ heterojunctions, where W and I represent WO_3 and In_2O_3 , respectively; 10 is the molar ratios of In_2O_3 in $\text{WO}_3/\text{In}_2\text{O}_3$ composites.

Sample	τ_1 (ns)	τ_2 (ns)	τ_3 (ns)	τ_a (ns)
$\text{WO}_3\text{-Ar}$	0.96	3.44	9.35	4.15
WI10-Ar	0.76	2.98	8.83	3.56
WI10-CO₂	0.71	3.05	9.03	3.38

References

1. K. Lejaeghere, V. Van Speybroeck, G. Van Oost, S. Cottenier, *Crit. Rev. Solid State Mater. Sci.*, 2014, **39**, 1-24.
2. X. Tao, P. Pan, T. B. Huang, L. Chen, H. D. Ji, J. J. Qi, F. B. Sun, W. Liu, *Chem. Eng. J.*, 2020, **395**, 125186.
3. Y. Peng, W. Z. Si, X. Li, J. M. Luo, J. H. Li, J. Crittenden, J. M. Hao, *Appl. Catal. B*, 2016, **181**, 692-698.
4. D. Z. Zhang, Y. H. Cao, Z. M. Yang, J. F. Wu, *ACS Appl. Mater. Interfaces*, 2020, **12**, 11979-11989.
5. J. Y. Ye, C. J. Liu, D. H. Mei, Q. F. Ge, *ACS Catal.*, 2013, **3**, 1296-1306.
6. L. F. Song, K. P. Dou, R. R. Wang, P. Leng, L. Q. Luo, Y. Xi, C. C. Kaun, N. Han, F. Y. Wang, Y. F. Chen, *ACS Appl. Mater. Interfaces*, 2020, **12**, 1270-1279.
7. B. C. Zhu, B. Cheng, L. Y. Zhang, J. G. Yu, *Carbon Energy*, 2019, **1**, 32-56.
8. I. B. Obot, D. D. Macdonald, Z. M. Gasem, *Corros. Sci.*, 2015, **99**, 1-30.