Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Lattice anharmonicity in charge compensated higher manganese silicide single crystals

Nagendra Singh Chauhan*, Ichiro Ono, and Yuzuru Miyazaki

Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan - 980-8579

^{*}Corresponding author: <u>nagendra599@gmail.com</u>; <u>chauhan.nagendra.singh.b1@tohoku.ac.jp</u> TEL/FAX: +81-22-795-7970/7971

S1. Structural Parameter and Crystallographic details - To determine the lattice parameters and phase identification, a (3+1) dimensional superspace group approach was used in conjunction with Le Bail analysis on the JANA2006 software package.

Centrosymmetric super-space group: $I4_1/amd(00\gamma)00ss$ (No. 141)

Table S1. Refined parameters and crystallographic details from Le Bail analysis of the powder XRD data for nominal $(Mn_{1-2x}V_xFe_x)Si_{1.74}$ samples at room temperature.

Chemical Composition	GOF	Cell Parameters (MnSi _y Phase)			
$(\mathrm{Mn}_{1-2x}\mathrm{V}_{x}\mathrm{Fe}_{x})\mathrm{Si}_{1.74}$	$R_{\rm wp}/R_{\rm e}$	a = b (Å)	c_{Mn} (Å)	$c_{Si}(\text{\AA})$	$\gamma = c_{Mn}/c_{Si}$
x = 0.01	1.41	5.5277(1)	4.3684(1)	2.5160(1)	1.7378(1)
x = 0.02	1.40	5.5236(1)	4.3681(1)	2.5345(1)	1.7234(1)
x = 0.03	1.32	5.5260(1)	4.3697(1)	2.5343(1)	1.7242(1)
x = 0.04	1.36	5.5252(1)	4.3688(1)	2.5353(1)	1.7228(1)
x = 0.05	1.21	5.5234(1)	4.3664(1)	2.5372(1)	1.7218(1)
<i>x</i> = 0.06	1.23	5.5221(1)	4.3652(1)	2.5363(1)	1.7209(1)

Figure S1. Le Bail analyis of XRD pattern of nominal composition (Mn_{0.98}V_{0.01}Fe_{0.01})Si_{1.74} displaying Bragg positions.

Figure S2. Le Bail analyis of XRD pattern of nominal composition (Mn_{0.96}V_{0.02}Fe_{0.02})Si_{1.74} displaying Bragg positions.

Figure S3. Le Bail analyis of XRD pattern of nominal composition (Mn_{0.94}V_{0.03}Fe_{0.03})Si_{1.74} displaying Bragg positions.

Figure S4. Le Bail analyis of XRD pattern of nominal composition (Mn_{0.92}V_{0.04}Fe_{0.04})Si_{1.74} displaying Bragg positions.

Figure S5. Le Bail analyis of XRD pattern of nominal composition (Mn_{0.90}V_{0.05}Fe_{0.05})Si_{1.74} displaying Bragg positions.

Figure S6. Le Bail analyis of XRD pattern of nominal composition (Mn_{0.88}V_{0.06}Fe_{0.06})Si_{1.74} displaying Bragg positions.

Figure S7. Temperature dependent (a) specific heat capacity (b) thermal diffusivity for nominal $(Mn_{1-2x}V_xFe_x)Si_{1.74}$ alloys. Specific heat reported previously by Chen et al.¹ shown for comparison.

Figure S8. (a) Electrical conductivity and (b) Seebeck coefficient over heating and cooling cycle for representative $(Mn_{0.94}V_{0.03}Fe_{0.03})Si_{1.74}$ single crystal.

S2. Detailed calculation of disorder scattering parameter (Γ). To analyse the κ_L reduction in MnSi alloys, the disorder scattering parameter Γ with mass (Γ_m) and strain (Γ_s) fluctuation component, was evaluated using the model of Slack² and Abeles³ as follows by taking into consideration the fractional occupation at Mn-sublattice by V and Ru as co-dopant.

$$\begin{split} \Gamma &= \ \Gamma_m + \Gamma_s \\ \Gamma_m &= \ \Gamma_m^V + \Gamma_m^{Fe} \\ \Gamma_s &= \ \Gamma_s^V + \Gamma_s^{Fe} \end{split}$$

$$\begin{split} \Gamma_m^V &= \frac{1}{3} \left(\frac{\bar{M}_V}{\bar{M}} \right) x (1-x) \left(\frac{M_V - M_{Mn}}{\bar{M}_V} \right)^2 \\ \Gamma_m^{Fe} &= \frac{1}{3} \left(\frac{\bar{M}_{Fe}}{\bar{M}} \right) y (1-y) \left(\frac{M_{Fe} - M_{Mn}}{\bar{M}_{Fe}} \right)^2 \\ \Gamma_s^V &= \frac{1}{3} \left(\frac{\bar{M}}{\bar{M}} \right) x (1-x) \varepsilon \left(\frac{r_V - r_{Mn}}{\bar{r}} \right)^2 \\ \Gamma_s^{Fe} &= \frac{1}{3} \left(\frac{\bar{M}}{\bar{M}} \right) y (1-y) \varepsilon \left(\frac{r_V - r_{Mn}}{\bar{r}} \right)^2 \\ \bar{r}_V &= r_V x + r_{Mn} (1-x) \\ \bar{r}_{Fe} &= r_{Fe} y + r_{Mn} (1-y) \\ \bar{M}_V &= M_V x + M_{Mn} (1-x) \\ \bar{M}_{Fe} &= M_{Fe} y + M_{Mn} (1-y) \\ \bar{M}_V &= \frac{1}{\gamma+1} (\bar{M}_V + \gamma M_{Si}) \\ \bar{M}_{Fe} &= \frac{1}{\gamma+1} (\bar{M}_{Fe} + \gamma M_{Si}) \end{split}$$

where, ${}^{M}{}_{Mn}$, ${}^{M}{}_{V}$, ${}^{M}{}_{Fe}$, and ${}^{M}{}_{Si}$ are the atomic weight of Mn, V, Fe, and Si, respectively; ${}^{r}{}_{Mn}$, ${}^{r}{}_{V}$, and ${}^{r}{}_{Fe}$ are the atomic radius of Mn, V, and Fe, respectively; x is the content of V, and y is the content of Fe; and ε is regarded as a phenomenological adjustable parameter calculated using the Grüneisen parameter (γ) and Poisson ratio (${}^{v}{}_{P}$).^{1,4}

- Chen, X.; Girard, S. N.; Meng, F.; Lara-Curzio, E.; Jin, S.; Goodenough, J. B.; Zhou, J.; Shi, L. Approaching the Minimum Thermal Conductivity in Rhenium-Substituted Higher Manganese Silicides. *Adv. Energy Mater.* **2014**, *4* (14), 1400452. https://doi.org/10.1002/aenm.201400452.
- (2) Slack, G. A. Effect of Isotopes on Low-Temperature Thermal Conductivity. *Phys. Rev.* **1957**, *105* (3), 829–831. https://doi.org/10.1103/PhysRev.105.829.

- (3) Abeles, B. Lattice Thermal Conductivity of Disordered Semiconductor Alloys at High Temperatures. *Phys. Rev.* **1963**, *131* (5), 1906–1911. https://doi.org/10.1103/PhysRev.131.1906.
- (4) Sanditov, D. S.; Belomestnykh, V. N. Relation between the Parameters of the Elasticity Theory and Averaged Bulk Modulus of Solids. *Technical Physics* 2011, *56* (11). https://doi.org/10.1134/S106378421111020X.