Electronic Supplementary Information

A novel 1D/2D core/shell CdS@SnS₂ heterostructure for efficient piezocatalytic hydrogen evolution and pollutant degradation

Renzhi Xiong, Yanjie Song, Kunjiao Li, Yanhe Xiao, Baochang Cheng and Shuijin Lei*

School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031,

P. R. China

*To whom correspondence should be addressed. E-mail: shjlei@ncu.edu.cn

Supplementary Figures

Fig. S1 High-magnification SEM images of the prepared (a) SnS_2 and (b) CdS samples.

Fig. S2 (a-c) EDS elemental mapping images and (d) EDS spectrum of the prepared SnS_2 sample.

Fig. S3 (a-c) EDS elemental mapping images and (d) EDS spectrum of the prepared CdS sample.

Fig. S4 EDS spectrum of the prepared $CdS@SnS_2-3$ composite sample.

Fig. S5 SEM images of the as-synthesized samples with different molar ratio of SnS₂ to CdS for (a) CdS@SnS₂-1, (b) CdS@SnS₂-2, (c) CdS@SnS₂-3, and (d) CdS@SnS₂-4.

Fig. S6 (a) N_2 adsorption-desorption isotherms and (b) the corresponding pore size distribution curves of the prepared CdS@SnS₂-*x* composite samples.

Fig. S7 (a) Displacement-voltage curve and (b) phase curve of the SnS₂ composite sample.(c) Displacement-voltage curve and (d) phase curve of the CdS composite sample.

Fig. S8 (a) Time-dependent piezocatalytic RhB degradation and (b) time-dependent piezocatalytic H_2 evolution without ultrasonic vibration over the as-prepared piezocatalysts.

Fig. S9 (a) Time-dependent piezocatalytic RhB degradation and (b) time-dependent piezocatalytic H_2 evolution under ultrasonic vibration over the prepared CdS, SnS_2 and CdS@SnS₂-3 samples, as well as the CdS+SnS₂-3 mixed sample.

Fig. S10 (a) Cycling runs in the piezocatalytic H_2 evolution over the CdS@SnS₂-3 sample, and (b) the corresponding average H_2 evolution rates. (c) Cycling runs in the piezocatalytic RhB degradation over the CdS@SnS₂-3 sample, and (d) the corresponding RhB degradation ratios.

Fig. S11 XRD patterns of the CdS@SnS₂-3 piezocatalyst before and after the five-cycle piezocatalytic reactions of RhB degradation and water splitting for H_2 evolution.

Fig. S12 SEM images of (a) the pristine $CdS@SnS_2-3$ photocatalyst, and those after the five-cycle piezocatalytic reactions of (b) RhB degradation and (c) water splitting for H_2 evolution.

Fig. S13 EPR spectra of (a) DMPO- \cdot O₂⁻ and (b) DMPO- \cdot OH for CdS@SnS₂-3 sample after 30 min of ultrasonic vibration. (c) Temporal absorption spectra of H₂O₂ in the reaction solution under different ultrasonic time assessed by the iodometric method. (d) Temporal absorption spectra of H₂O₂ in the reaction solution with and without introduction of anthraquinone.