Electronic Supplementary Information

In-situ formed Copper Nanoparticles via Strong Electronic Interaction with Organic Skeleton for pH-Universal Electrocatalytic CO₂ Reduction

Ying Zhang,^{*a 1} Chenchen Zhang,^{a 1} Dan Wang,^a Jianing Gui,^a Junjun Mao,^a Yang Lou,^a Chensi Pan^a and Yongfa Zhu^a

^aKey Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China

* To whom correspondence should be addressed.

Email: ying.zhang@jiangnan.edu.cn

Supplementary Figure S1. (a) FTIR spectrum and (b) UV-vis absorption spectrum of HPH.

Supplementary Figure S3. TEM images of (a) HPH and (b) HPH-Cu.

Supplementary Figure S4. FEs and current densities of HPH at different applied potential.

Supplementary Figure S5. Comparison of Faradaic efficiency of CO and pH of electrolyte with HPH-Cu and other reported CO₂RR catalysts.

Supplementary Figure S6. FEs of HPH-Cu in acidic electrolytes at different CO₂ flow rates.

Supplementary Figure S7. FE_{CO} of HPH-Cu and C+CuCl₂ in acidic, alkaline and neutral

electrolytes.

Supplementary Figure S8. (a) FE_{CO} of HPH-Cu and HPH+CuCl₂ in acidic, alkaline and neutral electrolytes; (b) Cl 2p XPS spectrum of HPH-Cu and HPH+CuCl₂.

Supplementary Figure S9. (a) SEM image, (b) TEM image, (c) High-resolution TEM image and (d) Elemental mapping images of HPH-Cu after electrolysis.

Supplementary Figure S10. XRD patterns of HPH and HPH-Cu.

Supplementary Figure S11. (a) Cu 2p and (b) Cu LMM XPS spectra of HPH-Cu after

electrolysis; (c) XPS N 1s spectra of HPH and HPH-Cu after electrolysis.

Supplementary Figure S12. The FE_{CO} of HPH-Cu and Ag in acidic electrolyte.

Supplementary Figure S13. In situ ATR-SEIRAS spectra of CO desorption after -1.2 V vs.

Ag/AgCl electrolysis in CO₂-saturated (a) acidic and (b) neutral electrolytes.

	E (V vs.	I/m A D/(E (V vs. Ag/AgCl)	E (V vs. RHE)
	Ag/AgCl)	I/mA	K/12	after 80% iR correction	after 80% iR correction
acidic	-1.5	28.19	3	-1.43	-1.13
	-1.8	84.82	3	-1.60	-1.30
	-2.0	102.70	3	-1.75	-1.45
	-2.2	147.30	3	-1.85	-1.55
	-2.4	180.98	3	-1.97	-1.67
	-2.6	207.36	3	-2.10	-1.80
alkaline	-1.5	44.59	1	-1.46	-0.46
	-1.8	127.29	1	-1.70	-0.70
	-2.0	193.93	1	-1.84	-0.84
	-2.2	250.23	1	-2.00	-1.00
	-2.4	378.37	1	-2.10	-1.10
	-2.6	408.63	1	-2.27	-1.27
neutral	-1.5	19.55	3	-1.45	-0.85
	-1.8	59.50	3	-1.66	-1.06
	-2.0	88.18	3	-1.79	-1.19
	-2.2	123.85	3	-1.90	-1.30
	-2.4	200.58	3	-1.92	-1.32
	-2.6	160.68	3	-2.21	-1.61

Supplementary Table S1. E (V vs. Ag/AgCl) after iR correction and E (V vs. RHE) after iR correction of HPH-Cu in acidic, alkaline, and neutral electrolytes.

Supplementary Table S2. Cu content analysis result of HPH-Cu.

Sample	m ₀ (g)	Test element	Element content W (%)
HPH-Cu	0.0659	Cu	7.12%

Faradaic efficiency							
Catalyst	Electrolyte	рН	of CO	Reference			
			[%]				
HPH-Cu	$\begin{array}{c} 0.45 \text{ M } \text{K}_2 \text{SO}_4 + 0.05 \text{ M} \\ \text{H}_2 \text{SO}_4 \end{array}$	1.9	68	☆ this work			
Ag	polymer electrolytes	2~5	43	Nat Chem, 2021, 13 , 33-40.			
Cu/C	$0.4 \text{ M K}_2 \text{SO}_4 + 0.1 \text{ M}$ $\text{H}_2 \text{SO}_4$	1.5	30	Nat Catal, 2022, 5 , 268-276.			
Cu-SiOx	0.1 M KHCO ₃	7.3	47.5	Nat commun, 2021, 12 , 2808.			
Au ₃ Cu NPs	0.1 M KHCO ₃	6.8	65	Nat commun, 2014, 5 , 4948.			
MOF-545-Cu	0.1 M KHCO ₃	7.3	38	<i>Chin Chem Lett</i> , 2023, 34 , 107458.			
BEN-Cu-BTC	0.1 M KHCO ₃	7.3	25	<i>Catal Sci Technol</i> , 2019, 9 , 5668-5675.			

Supplementary Table S3. Detailed comparison of Faradaic efficiency of CO and pH of electrolyte with HPH-Cu and other reported CO₂RR catalysts.