Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supp. Info. – Direct 4D Observations of Electrochemically Induced Intergranular Cracking in NMC811 Particles

Huw C. W. Parks,^{1,2} Adam M. Boyce,^{1,2,3} Aaron Wade,^{1,2} Thomas M. M. Heenan,^{1,2} Chun Tan,^{1,2}

Emilio Martínez-Pañeda,⁴ Paul R. Shearing,^{1,2} Dan J.L Brett,^{1,2} Rhodri Jervis^{1,2,*}

¹Electrochemical Innovation Lab,

Department of Chemical Engineering, University College London, London, WC1E 7JE ²The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, OX11 0RA ³School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland. ⁴Department of Civil and Environmental Engineering, Imperial College London, London, SW7 2AZ *To whom correspondence should be addressed; E-mail: Rhodri.Jervis@ucl.ac.uk

		Particle #10	Particle #11	Particle #12	Particle #14	Particle #15	Particle #16	Particle #17
Pristine NMC is lithiated								
Char NMC i	ged - 4.5 V is delithiated	t		神	×	A		
Particle Diameter (µm)	Pristine	14.4	12.9	11.3	12.3	11.0	10.1	10.0
	Charged - 4.5 V	15.3	12.8	12.3	12.9	11.4	10.7	11.0
Distance From CC (µm)	Pristine	28.3	22.0	44.9	31.0	33.6	40.0	8.9
	Charged - 4.5 V	30.3	24.1	48.0	33.6	35.8	43.6	9.9
Particle Volume (µm ³)	Pristine	1563.2	1125.6	756.0	975.0	698.1	540.1	517.0
	Charged - 4.5 V	1867.4	1363.1	965.5	1130.1	785.1	634.9	700.1
% Volume Change		+16.3	+17.4	+21.7	+13.7	+11.1	+14.9	+26.2

Figure S1: Additional particle information from Fig.2

Figure S2: Ortho slices of Particle 3 showing segmentation of different phases used in analysis as shown. Particle analysis was used for particle volume expansion. NMC and crack segmentations were

Figure S3: a-c) % Particle volume change upon charging as a function of: a) Distance from current collector, b) Pristine particle volume, c) Pristine particle diameter. d-f) Change in distance of the centre of each particle upon charging with respect to: d) Distance from current collector, e) Pristine particle volume, f) Pristine particle diameter.

Figure S4: Schematic diagram of coin cell set up for electrochemistry.

Figure S5: a) Photograph of electrode set up within tomography microscope. b) Zoomed in photograph of the electrode with tab appendage inside custom built holder. c) Radiograph of tab front view with RoI box in red. d) Radiograph of tab side view with RoI boxes in red and blue showing the position at which tomographies were taken.

Figure S6: Additional computational analysis using GREAT algorithm to detect the greyscale value of each pixel as a function of distance from the particle surface.

	Equation	Description	
	$J_p = - D_p ig(abla c_p + rac{\Omega c_p}{RT} abla \sigma_h ig)$	Fick's first law	(1)
	$rac{\partial c_p}{\partial t} + abla \cdot J_p = 0$	Fick's second law	(2)
Single particle			
transport and			
electrochemical		Butler-Volmer type	
model	$i_{app}/i_{0}=sinh^{-1}(rac{lpha_{a}F\eta}{RT})$	equation	(3)
		Exchange current	
	$i_0=Fk(c(c_{max}-c))^{0.5}$	density	(4)
	$\eta = V - U - rac{\Omega \sigma_H}{F}$	Overpotential	(5)
	$i_{app}=rac{Fc_{max}C_RV_p}{3600A_p}$	Applied current	(6)
		Mechanical	
	$ abla \cdot \sigma = 0$	equilibrium	(7)
Mechanical		Small strain	
model	$arepsilon = rac{1}{2} ((abla u)^T + abla u)$	formulation	(8)
	2		
	$arepsilon=arepsilon^{e}+arepsilon^{cn}$	Total strain	(9)
	$arepsilon^{ch}=f(c/c_{max})$	Lattice strain	(10)
		Griffith equation of	
	$rac{d\Pi}{dA}=rac{d\Psi}{dA}+rac{dW_s}{dA}$	fracture	(11)
		Helmholtz-type	
		reformulation of	
	$G_{c}(rac{1}{l}\phi-l abla^{2}\phi)-2(1-\phi)\psi(arepsilon^{e})=0$	Griffith equation	(12)
Phase field			
model	$h=(1-\phi)^2$	Damage function	(13)
		Auxiliary equation	
		for diffuse grain	
	$oldsymbol{\gamma} - l_{oldsymbol{\gamma}}^2 abla^2 oldsymbol{\gamma} = 0$	boundary interface	(14)
		Composite fracture	
	$G_{\it c}=hG_{\it g}+(1-h)G_{\it b}$	toughness function	(15)
		Auxiliary transition	
	$h=(1-\gamma)^2$	function	(16)

Table 1: Model equations for each domain in the 3D image-based model.

6

Parameter	Unit	Value	Source
D_p	m^2s^{-1}	$f(c_p/c_{p,max})$	[1]
$c_{p,max}$	$molm^{-3}$	51765	[2]
<i>c</i> _{p0}	$molm^{-3}$	51765	N/A
V_p	m^3	1.515×10^{-15}	N/A
$lpha_a, lpha_b$	1	0.5	N/A
U	V	$f(c_p/c_{p,max})$	[2]
R	$Jmol^{-1}~K^{-1}$	8.314	N/A
	K	293	N/A
E_p	GPa	150	[3]
G_b	Nm^{-1}	0.023	[3]
G_{g}	Nm^{-1}	0.27	[4]
A_p	m^2	6.48×10^{-10}	N/A
C_R	1	1/20	N/A
l	m	3.6e-8	N/A
l_{γ}	m	3.6e-8	N/A
σ_c	GPa	0.1	N/A

Table 2: Model parameters.

Table 3: Nomenclature.					
Parameter	Description	Parameter	Description		
			Active material		
J_p	Lithium flux	D_p	utilisation		
i_{app}	Applied current density	η	Overpotential		
			Equilibrium		
V	Particle potential	U	potential		
			Initial lithium		
C _p	Lithium concentration		concentration		
V_p	Particle volume	T	Temperature		
			Reaction rate		
R	Universal gas constant	${m k}$	constant		
α_a, α_c	Transfer constants	F	Faraday constant		
			Fracture toughness		
			of boundary and		
E_p	Young's modulus	G_b, G_g	grain		
u	Displacement	σ	Stress		
			Partial Molar		
i_{app}	Applied current	Ω	Volume		
σ_H	Hydrostatic stress	ε	Total strain		
			Lithiation induced		
ε^{e}	Elastic strain	$arepsilon^{ch}$	strain		
l	Phase field length	arphi	Damage parameter		
l_{γ}	Transition length scale	γ	Auxiliary variable		
h	Auxiliary transition function	П	Total energy		
Ψ	Strain energy density	W_{g}	Work of fracture		
A_p	Particle surface area	C_R	C-rate		

References

[1] Noh, H. J., Youn, S., Yoon, C. S., Sun, Y. K. (2013). Comparison of the structural and electrochemical properties of layered Li [NixCoyMnz] O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. Journal of power sources, 233, 121-130.

[2] Chen, C. H., Planella, F. B., O'regan, K., Gastol, D., Widanage, W. D., Kendrick, E. (2020). Development of experimental techniques for parameterization of multi-scale lithium-ion battery models. Journal of The Electrochemical Society, 167(8), 080534.

[3] Xu, B.-X., Zhao, Y., Stein, P. Phase field modeling of electrochemically induced fracture in Li-ion battery with large deformation and phase segregation. GAMM-Mitteilungen 2016 39, 92-109

[4] Stallard, J. C., Wheatcroft, L., Booth, S. G., Boston, R., Corr, S. A., De Volder, M. F., Inkson, B. J., Fleck, N. A. Mechanical properties of cathode materials for lithium-ion batteries. Joule 2022