Supporting Information

Unraveling the role of surface and interfacial defects for hydrogen

production to construct an all-in-one broken-gap photocatalyst

Jingwei Li,^{1,2,3} Xuyu Wang,^{*,4} Hongli Fang,¹ Xiaomin Guo,¹ Rongfu Zhou,⁵ Cong Wang,² Jian Li,² Mohamed Nawfal Ghazzal,^{*,2} Zebao Rui^{*,1}

¹ School of Chemical Engineering and Technology, The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, China

E-mail: ruizebao@mail.sysu.edu.cn

² Université Paris-Saclay, UMR 8000 CNRS, Institut de Chimie Physique, Orsay,
91405 France

E-mail: mohamed-nawfal.ghazzal@universite-paris-sacalay.fr

³ School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center, Guangzhou University, Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China

⁴ School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China; Huizhou Research Institute of Sun Yat-sen University, Huizhou 516081, Guangdong, China

E-Mail: wangxy@just.edu.cn

⁵ School of Environmental and Chemical Engineering, Foshan University, Foshan 528225, P. R. China

1. Supplementary Methods

Reagent: $Zn(CH_3COO)_2 \cdot 2H_2O$ and $FeCl_3 \cdot 6H_2O$ were purchased from Sinopharm Chemical Reagent Co. LTD. WCl₆ was purchased from Tianjin Xiensi Biochemical Technology Co. LTD. CH₃COONa and Ethylene glycol were bought from Aladdin and Macklin, respectively. All the reagents were A.R. level and directly used without further treatment.

Synthesis of WO_{3-x}/ZnFe₂O_{4-x}/NGWS: The NGW: Yb³⁺/Er³⁺@SiO₂ (NGWS) was first prepared via a reported method.²⁴ Then, the WO_{3-x}/ZnFe₂O_{4-x}/NGWS were synthesized through the following processes. 0.45 mmol Zn(CH₃COO)₂·2H₂O and 0.9 mmol FeCl₃·6H₂O were dissolved into a solution composed of 10 mL deionized water and 50 mL ethylene glycol. 0.15 g of NGWS was added to the above solution. After stirring for 30 min, 5 mL of 0.95 mol L⁻¹ CH₃COONa solution was dropped and stirred for another 15 min. The obtained mixture was transferred to a Teflon-lined autoclave and heated at 180 °C for 12 h. The ZnFe₂O_{4-x}/NGWS product was obtained after natural cooling. Secondly, the obtained ZnFe₂O_{4-x}/NGWS powders were ultrasonically dispersed in 15 mL absolute alcohol and then added into 40 mL of 7.5 mmol L⁻¹ WCl₆ absolute alcohol solution. After vibrating for 30 min, the mixture was transferred into a Teflon-lined autoclave and heated at 160 °C for 12 h. After naturally cooling to room temperature, the WO_{3-x}/ZnFe₂O_{4-x}/NGWS was obtained. All powder products were washed with deionized water and absolute alcohol in the centrifugal washing process and dried at 80 °C overnight.

Synthesis of WO_{3-x}/ZnFe₂O_{4-x}-4/NGWS: The preparation process of WO_{3-x}/ZnFe₂O_{4-x}-4/NGWS is the same as WO_{3-x}/ZnFe₂O_{4-x}/NGWS, except for the hydrothermal reaction time of ZnFe₂O_{4-x}/NGWS and WCl₆ anhydrous ethanol is reduced to four hours.

Synthesis of $ZnFe_2O_{4-x}$: The preparation process of $ZnFe_2O_{4-x}$ is the same as $ZnFe_2O_{4-x}$ _x/NGWS except without adding NGWS.

Synthesis of $WO_{3-x}/ZnFe_2O_{4-x}$ -C/NGWS: The $WO_{3-x}/ZnFe_2O_{4-x}$ -C/NGWS was synthesized by calculating the $WO_{3-x}/ZnFe_2O_{4-x}/NGWS$ at 300 °C for two hours in the air atmosphere.

Synthesis of WO_{3-x}/ZnFe₂O_{4-x} and WO_{3-x}: 0.2 g of ZnFe₂O_{4-x} powders were ultrasonically dispersed in 15 mL absolute alcohol. Meanwhile, 0.67 g of WCl₆ was dissolved in 40 mL of absolute alcohol solution under stirring. The above solutions were mixed uniformly in a Teflon-lined autoclave with strongly vibrated for 30 min. Then, the Teflon-lined autoclave was heated at 160 °C for 12 h. After cooling naturally, the obtained WO_{3-x}/ZnFe₂O_{4-x} powders were washed with deionized water and absolute alcohol and dried at 80 °C. The preparation process of WO_{3-x} is the same as WO_{3-x}/ZnFe₂O_{4-x} except for without adding ZnFe₂O_{4-x}.

Characterization: The crystal structures and nanostructures of samples were analyzed by X-ray diffraction patterns (XRD, D8 ADVANCE), Raman spectra (Renishaw inVia Laser Micro-Raman Spectrometer), X-ray photoelectron spectroscopy (XPS, K-Alpha⁺ spectrometer), field emission scanning electron microscopy (SEM, Quanta 400F), Transmission electron microscopy (TEM, F30 model FEI Tecnai G2 F30 instrument). The Ultraviolet-visible-infrared (UV-vis-IR) diffuse reflectance spectra were tested by the UV-vis spectrophotometer (DRS, UV-3600). Mott-Schottky (M-S) spectra were obtained on the electrochemical workstation (CHI660E). Ag/AgCl electrode was used as the reference electrode and 1.0 mol L⁻¹ of Na₂SO₄ (pH=7.0) was the electrolyte. All of the flat-band potential $(E_{\rm fb})$ values in M-S plots were corrected with the equation : $E_{\rm fb}$ $= E_{Ag/AgCl} + 0.197$, where E_{fb} and $E_{Ag/AgCl}$ relate to the potentials vs. Normal Hydrogen Electrode (NHE) and Ag/AgCl electrode, respectively. The photoluminescence (PL) spectra and time-resolved photoluminescence (TRPL) spectra were performed on FLSP980. The ultrafast transient absorption (TA) spectroscopy was carried out on the 1 kHz Ti: Sapphire Coherent Astrella regenerative amplifier from Coherent (6 mJ/pulse, 35 fs (fwhm) at 400 nm), which was coupled by Helios transient absorption spectrometer (Ultrafast systems). Electron Spin Resonance (ESR) spectra were measured by the Bruker model A300 spectrometer at ~99 K temperature.

Theoretical calculation: The DFT calculations were performed using the Vienna ab initio simulation package (VASP) based on the projector augmented wave method. The Perdew–Burke–Ernzerhof functional in generalized gradient approximation (GGA) was used to treat the exchange and correlation energy. The structure optimization was achieved up to a precision of 10^{-5} eV in total energy difference, and the Hellmann-Feynman forces were converged to 0.01 eV Å⁻¹ on each atom. The Kohn-Sham orbitals were expanded in plane waves with cut-off energy of 450 eV. The H₂O adsorption energy (*E_{ads}*) was calculated with the following equation:

$$E_{ads} = E_{m, \, surface} + E_{H_2O} - E_{H_2O - m, \, surface}$$

where ${}^{E}_{m, surface}$ is the energy of the ZnFe₂O₄ (110) or ZnFe₂O_{4-x} (110) surface, ${}^{E}_{H_20}$ is the energy of a H₂O molecule in the vacuum, and ${}^{E}_{H_20-m, surface}$ is energy of the corresponding ZnFe₂O₄ (110) or ZnFe₂O_{4-x} (110) surface after the adsorption of H₂O molecule. *m* refers to ZnFe₂O₄ or ZnFe₂O_{4-x}. The charge density differences were estimated through the formula $\Delta \rho = \rho A + B - \rho A - \rho B$, where ρX is the charge density of X.

Photocatalytic experiments: ~2.5 mg of the catalysts was ultrasonically dispersed in a mixture solution of 0.5 mL methanol and 3.5 mL deionized water in a 50 mL Pyrex bottle. The pyrex bottles were bubbled with Ar gas for 15 min to eliminate O₂. The pyrex bottles were irradiated for a certain time by a Xe lamp (Beijing Zhongjiao Jinyuan Technology Co. LTD, λ =420 nm-1100 nm, 300 mW cm⁻²) to produce hydrogen. The contents of hydrogen were analyzed by gas chromatography coupled with a TCD detector (Fuli Analytical Instrument Co., Ltd.).

2. Supplementary Figures and Tables

The XRD patterns in Figure S1a, suggest that the WO_{3-x}/ZnFe₂O_{4-x} components on NGWS are composed of monoclinic W₁₈O₄₉ (PDF#05-0392) and cubic ZnFe₂O₄ (PDF#22-1012) (Figure S1b, c). The NaGd(WO₄)₂:Yb³⁺/Er³⁺@SiO₂ (NGWS) shows the tetragonal Na_{0.5}Gd_{0.5}WO₄ peaks (PDF#25-0829). The diffraction peaks of Na_{0.5}Gd_{0.5}WO₄ were unaffected after doping with Yb³⁺ and Er³⁺, and the diffraction peaks of SiO₂ were unobserved on NGWS due to its low contents, matching well with the referenced work.¹ The diffraction peaks of WO_{3-x} at 22.92°, 25.65°, 34.56°, 47.07°, 50.18°, 54.55°, and 56.74° were assigned to the (010), (210), (502), (020), (022), and (017) W₁₈O₄₉ crystal planes (PDF#05-0392). Notably, the combination of WO_{3-x} and ZnFe₂O_{4-x} in heterojunction WO_{3-x}/ZnFe₂O_{4-x} results in the redshift of

diffraction peak from 22.92° of WO_{3-x} to 23.22° of WO_{3-x}/ZnFe₂O_{4-x} and then 23.48° of WO_{3-x}/ZnFe₂O_{4-x}/NGWS (Figure S1d), suggesting the (010) crystal plane of WO_{3-x} is strongly react with ZnFe₂O_{4-x} at WO_{3-x}-ZnFe₂O_{4-x} interfaces. Meanwhile, the redshift of the XRD diffraction peak is ascribed to the significantly smaller lattice planes of $ZnFe_2O_{4-x}$ (compared to WO_{3-x}), which results in the reduced lattice spacing in WO_{3-x}-ZnFe₂O_{4-x} interface (Table S1).^{2,3} The redshift of the XRD diffraction peak of WO₃. _x/ZnFe₂O_{4-x}/NGWS (23.48°) compared to that of WO_{3-x}/ZnFe₂O_{4-x} (23.22°), suggesting that the enhanced interaction of WO3-x-ZnFe2O4-x interfaces with the assistance of NGWS. The Raman peaks of WO3-x located at 70-400 cm⁻¹ belong to W-O-W or O-W-O bending modes, and those at 600-970 cm⁻¹ are related to W-O stretching modes (Figure S2a).^{4,5} The Raman peaks at 704 cm⁻¹, 813 cm⁻¹, and 965 cm⁻¹ correspond to the W-O stretching modes (Figure S2a).⁴ The ZnFe₂O_{4-x} shows obvious characteristic Raman peaks of AB₂O₄ spinel structure at the 200-800 cm⁻¹ range (Figure S2a).⁶ The peak at 643.1 cm⁻¹ attributes to the motions of O in tetrahedral AO₄ groups (A for Fe or Zn).⁶ The WO_{3-x}/ZnFe₂O_{4-x} and WO_{3-x}/ZnFe₂O_{4-x}/NGWS also show the characteristic Raman peaks of WO_{3-x}, ZnFe₂O_{4-x}, and NGWS. Notably, the Raman peaks at 643.1 cm⁻¹ of ZnFe₂O_{4-x} show a blueshift to 638.2 cm⁻¹ and then to 635.8 cm⁻¹ of WO_{3-x}/ZnFe₂O_{4-x}/NGWS, while the peak at 965.4 cm⁻¹ of WO_{3-x} shows a redshift to 972.9 cm⁻¹ and then to 995.6 cm⁻¹ of WO_{3-x}/ZnFe₂O_{4-x}/NGWS, indicating a strong interaction on WO3-x-ZnFe2O4-x interfaces (Figures S2b, c). These shifts of Raman peaks suggest that the interaction of WO_{3-x} and ZnFe₂O_{4-x} at interfaces WO_{3-x}-ZnFe₂O₄. x mainly relates to the interaction between the W-O bond of WO_{3-x} and the A-O bond in AO₄ of $ZnFe_2O_{4-x}$ (A for Fe or Zn).

Figure S1. (a) XRD patterns of materials. Crystal structure diagrams of monoclinic (b) $W_{18}O_{49}$ (WO_{3-x}) and cubic (c) ZnFe₂O₄. (d) The enlarged region from (a).

Crystal planes of monoclinic	Crystal planes of cubic
W ₁₈ O ₄₉ (Å)	ZnFe ₂ O ₄ (Å)
$d_{(010)} = 3.780$	$d_{(111)} = 4.873$
$d_{(103)} = 3.730$	$d_{(220)} = 2.984$
$d_{(-111)} = 3.630$	$d_{(311)} = 2.543$
$d_{(210)} = 3.440$	$d_{(222)} = 2.436$
$d_{(-104)} = 3.390$	$d_{(400)} = 2.109$
$d_{(211)} = 3.170$	$d_{(422)} = 1.723$
$d_{(113)} = 2.654$	$d_{(511)} = 1.624$
$d_{(020)} = 1.888$	$d_{(440)} = 1.491$

Table S1. Comparison of crystal planes of $W_{18}O_{49}$ (WO_{3-x}) and ZnFe₂O₄.

Figure S2. (a) Raman shift of the materials. (b, c) The enlarged region noted in (a).

Figure S3. (a, b) SEM images of NGWS in different magnifications. TEM image of NGWS inset in (b). (c) TEM and (d) HRTEM images of ZnFe₂O_{4-x}/NGWS.

The SEM and TEM images in Figures S3a, b demonstrate the ellipsoid shape of NGW, which is covered by a thin layer of SiO_2 to format a core-shell nanostructure, matching well with the referenced work.¹

Figure S4. (a) TEM and (b) HRTEM images of WO_{3-x}.

Figure S5. EDS spectrum of $WO_{3-x}/ZnFe_2O_{4-x}/NGWS$ corresponds to the mapping images in Figure 1b and the corresponding specifically elemental ratios of WO_{3-x} and $ZnFe_2O_{4-x}$ of the inset table.

Figure S6. The schematic diagram for constructing defect WO_{3-x} -ZnFe₂O_{4-x} interface.

Figure S7. (a, b) TEM images and (c) elemental mapping images of $WO_{3-x}/ZnFe_2O_{4-x}-4/NGWS$.

Figure S8. SEM images of (a) $ZnFeO_{4-x}$ and (b) $WO_{3-x}/ZnFe_2O_{4-x}$. (c, d) SEM images of $WO_{3-x}/ZnFe_2O_{4-x}/NGWS$ with different magnifications.

The SEM image in Figure S8a shows the nanoparticles architecture of $ZnFe_2O_{4-x}$. The direct combination of WO_{3-x} and $ZnFe_2O_{4-x}$ nanoparticles without the assistance of NGWS substrate results in irregular and aggregate nanoparticles of $WO_{3-x}/ZnFe_2O_{4-x}$ with sizes of 200 nm-800 nm (Figure S8b). After growing on NGWS, the $WO_{3-x}/ZnFe_2O_{4-x}$ nanoparticles are widely dispersed (Figures S8c, d).

Figure S9. XPS survey spectra of samples.

The presented W 4f, O 1s, Fe 2p, and Zn 2p peaks at XPS survey spectra of heterojunctions are matched well with those at semiconductors without other impurities further verifying the successful synthesis of $WO_{3-x}/ZnFe_2O_{4-x}/NGWS$ and $WO_{3-x}/ZnFe_2O_{4-x}/NGWS$ and $WO_{3-x}/ZnFe_2O_{4-x}/NGWS$ is related to SiO₂ at surfaces of NGW.

Table S2 The calculatedly relative ratios of typical species obtained from XPS spectra

 of samples in Fig. 2b-d

Materials	$\mathrm{Fe}^{2+} vs.$	W ⁴⁺ <i>vs</i> .	O ₁ vs.	O_v vs.	O _a vs.	$O_v + O_a vs.$	
	all Fe species	all W species	all O species	all O species	all O species	all O species	
WZF/NGWS	0.053	0	0.24	0.28	0.48	0.76	
WZF	0.043	0.020	0.65	0.26	0.09	0.35	
WO _{3-x}	/	0.11	0.67	0.24	0.09	0.33	
ZnFe ₂ O _{4-x}	0	/	0.85	0.10	0.05	0.15	

Figure S10. The UV-vis-IR spectrum of NGWS and (b) Upconversion luminescence emission spectra of materials excited with 980 nm laser (power density of 56 mW cm⁻²). The inset photograph is the visible emission light of NGWS excited at 980 nm.

The UV-vis-IR spectrum in Figure S10a suggests the light absorption range of 200-350 nm and 900-1030 nm on NGWS. The upconversion luminescence emission spectra in Figure S10b indicate that the NGWS shows strong visible light emission at ranges of 500~590 nm and 630~720 nm under the excitation of 980 nm, while those are unsighted on WO_{3-x}/ZnFe₂O_{4-x}, WO_{3-x}, and ZnFe₂O_{4-x}. Obviously, the intensity of emission peaks of WO3-x/ZnFe2O4-x/NGWS was significantly reduced compared to NGWS. Figure 3a indicates that the WO_{3-x}/ZnFe₂O_{4-x}/NGWS has strong absorption in the range of 500-720 nm. Therefore, when WO_{3-x}/ZnFe₂O_{4-x} is loaded on NGWS, the visible emission energy of NGWS is absorbed by WO_{3-x}/ZnFe₂O_{4-x}, leading to the emission peak of WO_{3-x}/ZnFe₂O_{4-x}/NGWS decreases significantly in the range of 500-720 nm. Although the thin shell active components will reduce the light absorption of NGWS (UNCPs) to a certain extent, and subsequently reduce the intensity of photoluminescence. However, it has been widely verified that the thin shell active components have a weak shielding effect on the excitation light of UNCPs,⁷⁻⁹ thus the absorption of photoluminescence energy by active species is the main factor that reduces the photoluminescence intensity of NGWS. As an evidence, the absorption intensity of active components WO3-x/ZnFe2O4-x at the range of 500-590 nm is higher

than that of 630-720 nm (Figure 3a), which leads to the upconversion luminescence peak of WO_{3-x}/ZnFe₂O_{4-x}/NGWS at the range of 500-590 nm is weaker than that of 630-720 nm (Figure S10b). This result further confirms that the NGWS can effectively improve the light utilization efficiency of WO_{3-x}/ZnFe₂O_{4-x}. Therefore, the NGWS is not only a substrate to assist the dispersion and interaction of WO_{3-x}/ZnFe₂O_{4-x} but also an UNCPs material to improve the light utilization efficiency of WO_{3-x}/ZnFe₂O_{4-x} for WO_{3-x}/ZnFe₂O_{4-x}.

Figure S11. The plots of the square root of Kubelka-Munk function against photon energy of (a) WO_{3-x} and (b) $ZnFe_2O_{4-x}$ based on the UV-vis-IR absorption spectra in Figure 3a

Materials	Bandgaps	Flat-band ($E_{\rm fb}$)	Conduction	Valance	Fermi	
	$(E_{\rm g})$	potentials	band (E_c)	band (E_v)	level ($E_{\rm f}$)	
WO _{3-x}	2.6 eV	0.30 V	0.20 V	2.80 V	-0.11 V	
ZnFe ₂ O _{4-x}	1.6 eV	-0.05 V	-1.55 V	0.05 V	-0.01 V	

Table S3 The band structure parameters of WO_{3-x} and $ZnFe_2O_{4-x}$.

Figure S12. The summarized schematic diagram of carriers transfer in broken-gap heterojunction.

The TRPL spectra in Figure 3e were fitted with the triexponential function Equation S1 and the average decay times $\tau_{(ave)}$ were calculated according to Equation S2:¹⁰

$$I(t) = A_1 e^{(-t/\tau_1)} + A_2 e^{(-t/\tau_2)} + A_3 e^{(-t/\tau_3)}$$
(S1)

$$\tau_{ave} = \frac{A_1 \tau_1^2 + A_2 \tau_2^2 + A_3 \tau_3^2}{A_1 \tau_1 + A_2 \tau_2 + A_3 \tau_3}$$
(S2)

Where τ_1 represents the in-band recombination lifetime of electron-hole pairs, τ_2 and τ_3 relate to non-radiative lifetime in the interface, A₁, A₂, and A₃ are the corresponding amplitudes.

Figure S13. (a) PL spectra of samples.

Figure S14. Photocurrent curves under the light "ON/OFF" illumination of materials.

Figure S15. Mott-Schottky plots of (a) $WO_{3-x}/ZnFe_2O_{4-x}$ and (b) WO_{3-x} and $ZnFe_2O_{4-x}$ _x physical mixture ($WO_{3-x}+ZnFe_2O_{4-x}$). Inset in (a) is the corresponding diagrams of internal electric fields in $WO_{3-x}-ZnFe_2O_{4-x}$ interfaces with band bending.

The Mott-Schottky (M-S) plot of the $WO_{3-x}+ZnFe_2O_{4-x}$ mixture with positive and negative slopes indicates the obvious *n-p* type characteristics (Figure S15b). However, the $WO_{3-x}+ZnFe_2O_{4-x}$ mixtures show a non-overlapped *n-p* channel range (or built-in electric field), suggesting no charge transfer channel formatted in $WO_{3-x}+ZnFe_2O_{4-x}$ mixtures.

Figure S16. Photocatalytic H₂ yielding rates of materials.

Figure S17. Photocatalytic H₂ generation *vs* time curves of $WO_{3-x}/ZnFe_2O_{4-x}/NGWS$ under Vis-IR light or visible light irradiation.

Figure S18. (a) Photocatalytic H₂ generation *vs.* time curves of $WO_{3-x}/ZnFe_2O_{4-x}/NGWS$ under vis-IR light irradiation with the photoinduced thermal condition and single light irradiation with a temperature lower than 25 °C. (b) Photocurrent curves of $WO_{3-x}/ZnFe_2O_{4-x}/NGWS$ at temperatures of 25 °C and 40 °C with vis-IR light irradiation. (c) DMPO-•O₂⁻ and (d) DMPO-•OH ESR spectra of $WO_{3-x}/ZnFe_2O_{4-x}/NGWS$ at room temperature (RT) with Vis-IR light irradiation to induce photothermal effect, maintained at 5 °C with vis-IR light irradiation. The higher peak intensities of DMPO-•O₂⁻ and DMPO-•OH relate to higher photoredox catalytic ability.¹⁰

Figure S19. (a) Photocatalytic H_2 generation *vs* time curves of materials under Vis-IR light irradiation, and (b) the corresponding H_2 production rates.

Figure S20. (a) XRD patterns. (b) TEM and (c) HRTEM images of WO_{3-x}/ZnFe₂O_{4-x}/NGWS after calcinating (WO_{3-x}/ZnFe₂O_{4-x}-C/NGWS) under air atmosphere. (d) XPS O 1*s* spectra of WO_{3-x}/ZnFe₂O_{4-x}-C/NGWS and WO_{3-x}/ZnFe₂O_{4-x}/NGWS. (e) Powder ESR spectra. (f) Mott-Schottky (M-S) plot of WO_{3-x}/ZnFe₂O_{4-x}-C/NGWS. Inset in (f) is the corresponding diagrams of internal electric fields in WO_{3-x}-ZnFe₂O_{4-x}-C interfaces with band bending. (g) TRPL spectra.

Table S4 The calculatedly relative amount of O_v in the samples according to the fitting peak areas of O 1s XPS spectra in Figure S20d.

Materials	O_1 vs.	$\mathbf{O}_{\mathbf{v}}$ vs.	O _a vs.	$O_v + O_a vs.$
	all O species	all O species	all O species	all O species
WO _{3-x} /ZnFe ₂ O _{4-x} /NGWS	0.24	0.28	0.48	0.76
WO _{3-x} /ZnFe ₂ O _{4-x} -C/NGWS	0.42	0.17	0.41	0.58

The $WO_{3-x}/ZnFe_2O_{4-x}$ -C/NGWS maintains crystal structure and thin film architectures of $WO_{3-x}/ZnFe_2O_{4-x}/NGWS$ after calculating at 300 °C in the air

atmosphere (Figure S20a, b). However, the fitting O 1*s* spectra of WO_{3-x}/ZnFe₂O_{4-x}-C/NGWS (0.17) suggest that the relative amount of O_v compared to WO_{3-x}/ZnFe₂O_{4-x} $_x$ /NGWS (0.28) is decreased although the interfacial defects were protected during the calculation (Figure S20c, d and Table S4). The fewer O_v of WO_{3-x}/ZnFe₂O_{4-x}-C/NGWS leads to the lower intensity of O_v ESR signal peak compared to WO_{3-x}/ZnFe₂O_{4-x} $_x$ /NGWS (Figure S20e). The M-S plot of WO_{3-x}/ZnFe₂O_{4-x}-C/NGWS shows the obvious *n-p* type characteristics with positive and negative slopes (Figure S20f). Although the O_v of WO_{3-x}/ZnFe₂O_{4-x}-C/NGWS is reduced, its retained interfacial O_v still generates a smaller overlapped *n-p* channel region of 0.03 V (Figure S20f).

The TRPL spectra of WO_{3-x}/ZnFe₂O_{4-x}-C/NGWS was fitted by Equation S1 and the average decay time $\tau_{(ave)}$ was calculated according to Equation S2 to analyze the charge transfer kinetics at WO_{3-x}-ZnFe₂O_{4-x}-C interfaces (Figure S20g). The WO_{3-x}/ZnFe₂O_{4-x}-C/NGWS shows an average lifetime (τ_{ave}) of 2.91 ns. The charge tunneling rate at the WO_{3-x}-ZnFe₂O_{4-x}-C interface is calculated following Equation S3.¹¹

$$k_{tr} = 1/\tau_{ave,WO_{3-x}/ZnFe_2O_{4-x}-C/NGWS} - 1/\tau_{ave,WO_{3-x}}$$
(S3)

where the $\tau_{ave,WO_{3-x}/ZnFe_2O_{4-x}-C/NGWS}$ and $\tau_{ave,WO_{3-x}}$ refer to photoexcited electrons delay average time of WO_{3-x}/ZnFe_2O_{4-x}-C/NGWS and WO_{3-x}, respectively. Thus, the k_{tr} of WO_{3-x}/ZnFe_2O_{4-x}-C/NGWS is 1.06×10^8 s⁻¹, which is lower than 3.23×10^8 s⁻¹ of WO_{3-x}/ZnFe_2O_{4-x}/NGWS (Figure S20g).

Figure S21. Recycling photocatalytic test of H_2 generation for $WO_{3-x}/ZnFe_2O_{4-x}/NGWS$ (WZF/NGWS) with each cycle test under Vis-IR light irradiation for four hours.

Figure S22. TG and DTA curves of $WO_{3-x}/ZnFe_2O_{4-x}/NGWS$ (WZF/NGWS) tested at N₂ atmosphere.

Figure S23. (a) TEM and (b) HRTEM images of $WO_{3-x}/ZnFe_2O_{4-x}/NGWS$ after catalytic reaction. (c) XRD and (d) UV-vis-IR spectra of $WO_{3-x}/ZnFe_2O_{4-x}/NGWS$ before and after catalytic reaction. (e) The O 1*s* XPS spectra of $WO_{3-x}/ZnFe_2O_{4-x}/NGWS$ after catalytic reaction.

The O 1s XPS spectra of WO_{3-x}/ZnFe₂O_{4-x}/NGWS after catalytic reaction shown in Figure S23e just demonstrates a little decrease of the O_v+O_a value of 0.70 for oxygen vacancy defects compared to that of 0.76 before catalytic reaction (Table S2).

Figure S24. Crystal structure diagrams of H_2O .

Figure S25. The calculated partial DOS of $ZnFe_2O_4$ and $ZnFeO_{4-x}$ after the absorptions of H₂O. Fermi level has been set as the reference level.

Figure S25 shows that Fe orbitals of $ZnFe_2O_4$ and $ZnFeO_{4-x}$ have higher DOS intensities near E_f level compared to Zn and O orbitals, which suggests the Fe orbitals possess a higher density of delocalized electrons and the major active sites for catalytic H_2 evolution reaction. Obviously, the regions of Fe orbitals above the E_f level of $ZnFeO_{4-x}$ are larger than those of $ZnFe_2O_4$, indicating the introduction of O_v on the surface enhances the delocalization of electrons. The delocalized electrons on surfaces favor H_2O absorption and activation.³

Figure S26. Photocatalytic H₂ yielding rates of WO_{3-x}/ZnFe₂O_{4-x}/NGWS and 0.1 wt% Pt/TiO₂ under Vis-IR light (420 nm $<\lambda<1100$ nm, 300 mW cm⁻²) irradiation. The 0.1 wt% Pt/TiO₂ was synthesized through reduced H₂PtCl₆·(H₂O)₆Pt to Pt on surfaces of TiO₂ using NaBH₄ as the reductant in an aqueous solution. The content of Pt on TiO₂ was determined by ICP measurement.

Photoinduced H₂ Evolution Catalysts Light source **Reactive solution** temperature rate (µmol g-Ref. ¹ h⁻¹) (°C) 300 W Xe lamp $(300 \text{ mW cm}^{-2},)$ 3.5 mL water and 0.5 25-40 This WO3-x/ZnFe2O4-972.8 x/NGWS 420 nm <λ<1100 mL methanol work nm) 300 W Xe lamp Ni_{0.17}Co_{0.83}(OH₁₋ (cut by 1.5 AM 70 mL 1 M KOH Maintain at 25 34.0 [S12] $x)_2$ filter) 300 W Xe lamp 10 mL of acetonitrile [Co-1b]-COF (cut by 1.5 AM and water in a ratio of 111.0 [S13] filter) 4:1 and 100 µL TEOA N/A 300 W Xe lamp 239.3 Co_xNi_vP-PCN 80 mL water [S14] N/A (λ≥420 nm) 300 W Xe lamp (200 mW cm⁻², N/A 260.0 3DOM BiVO₄ 0.1 M Na₂SO₃ [S15] λ>420 nm) 100 mL water and 10 CN-xNi-HO 300 W Xe lamp 354.9 [S16] mL of TEOA N/A 2.0 Ml CdSe/Zn_{1-x}Fe_xS CdSe/Zn_{1-x}Fe_xS N/A QDs solution and 0.7 N/A 393 ± 6.7 [S17] QD mL triethylamine 20 mL acetonitrile, 0.2 Ni₂P@UiO-66-300 W Xe lamp mL deionized water and 409.1 [S18] NH_2 (>380 nm) 0.6 mL triethylamine N/A 63 mL of acetonitrile, 15 NH₂-MIL-UV-LEDs 420 N/A 490.0 [S19] mL of triethylamine and 125(Ti) nm (32 W) 2 mL of water 300 W Xe lamp CdS/BCNNTs 526.0 100 mL water [S20] Maintain at 6 (λ≥420 nm) 300 W Xe lamp 50 mL methanol solution PA-Ni@PCN 713.0 [S21] (20 vol%) N/A (λ≥420 nm) 150 W Xe lamp MAPbI₃/CoP hydroiodic acid solution 785.9 [S22] N/A (λ≥420 nm) 300 W Xe lamp 100 mL water and 10 S-pCN/WO_{2.72} 786.0 [S23] (λ>420 nm) mL triethanolamine N/A 300 W Xe lamp Maintained at CdS@mZnS 100 mL 0.25 M Na₂S, 820.0 [S24] 0.35 M Na₂SO₃ NRs ~25 $(\lambda > 422 \text{ nm})$

Table S5 The comparison of solar H_2 generation rate of $WO_{3-x}/ZnFe_2O_{4-x}/NGWS$ andthe recently reported materials without noble metal elements or co-catalyst.

Table S6 The comparison of solar $\rm H_2$ generation rate of WO_{3-x}/ZnFe_2O_{4-x}/NGWS and

Catalysts	Light source	Types containing noble metal elements or co-catalyst	Reactive solution	Photoinduced temperature (°C)	H ₂ Evolution rate (µmol g ⁻¹ h ⁻¹)	Ref.
WO _{3-x} /ZnFe ₂ O ₄₋ _x /NGWS	300 W Xe lamp (300 mW cm ⁻² , 420 nm <λ<1100 nm)	N/A	3.5 mL water and 0.5 mL methanol	25-40	972.8	This work
MnO _x /g- C ₃ N ₄ /CdS/Pt	300 W Xe lamp (100 mW cm ⁻²)	Pt	100 mL 0.35 M Na ₂ S, 0.25 M Na ₂ SO ₃	Maintained at 8	1303.4	[S25]
TJU-16-Rh _{0.22}	300 W Xe lamp	Rh	100 ml H ₂ O	Maintained at 5	31.0	[S26]
$RuO_2\text{-loaded}\\Ba_2Bi_3Nb_2O_{11}I$	300 W Xe (λ>400 nm)	Rh	Methanol solution (20 vol %, 100 mL)	N/A	52.0	[S27]
TiO ₂ -Ti ₃ C ₂ /Ru	300 W Xe lamp (350 nm <λ<780 nm)	Ru	80 mL 10% methanol solution	N/A	235.3	[S28]
PCN@HP	300 W Xe lamp (λ>400 nm)	Pt	150 mL water	Maintained at 25	350.0	[S29]
Au/TiO ₂ (P25)- gC ₃ N ₄	N/A	Au	triethanolamin e 1 vol%)	N/A	419.0	[S30]
PtSA/Cs ₂ SnI ₆	300 W Xe lamp (λ≥420 nm, 100 mW cm ⁻²)	Pt	Aqueous HI solution (containing 20 vol% H ₃ PO ₂)	Maintained at 25	434.0	[S31]
PbTiO ₃ -TiO ₂	300 W Xe lamp	Pt, Pb	100 mL water and 10 vol % triethanolamin e	N/A	436.5	[\$32]
Ultrathin g-C ₃ N ₄ nanosheets/boron -doped g-C ₃ N ₄ (CNN/BDCNN)	300 W Xe lamp (λ>300 nm)	N/A	90 mL water and 10 vol % triethanolamin e	Maintained at 35	491	[\$33]

the recently reported materials with noble metal elements or co-catalyst.

Pt-Fc@UiO-66- NH ₂	300 W Xe lamp (λ>380 nm)	Pt	0.2 mL water and 2 mL triethanolamin e	N/A	514.8	[834]
Ag-Ag ₂ S-CdS NPs	300 W Xe lamp (1000 mW cm ⁻² , λ>350 nm)	Ag	100 mL 0.1 M Na ₂ SO ₃ solution	Maintained at 25	~800.0	[\$35]
Cs ₃ Bi _{0.6} Sb _{1.4} I ₉	N/A	Pt	aqueous HI solution	N/A	926	[S36]

References

- 1 L. Zheng, X. Huang, J. Zhong, Z. Wang and X. Cheng, *RSC Adv.*, 2021, **11**, 3981–3989.
- 2 R. Lamber, S. Wetjen and N. I. Jaeger, *Phys. Rev. B.*, 1995, **51**, 10968–10971.
- J. Li, R. Lian, J. Wang, S. He, S. P. Jiang and Z. Rui, *Electrochim. Acta*, 2020,
 331. 135395.
- 4 C. Guo, S. Yin, Q. Dong and T. Sato, *RSC Adv.*, 2012, **2**, 5041.
- C. Guo, S. Yin, M. Yan, M. Kobayashi, M. Kakihana and T. Sato, *Inorg. Chem.*,
 2012, **51**, 4763–4771.
- M. Maletin, E. G. Moshopoulou, A. G. Kontos, E. Devlin, A. Delimitis, V. T.
 Zaspalis, L. Nalbandian and V. V. Srdic, *J. Eur. Ceram. Soc.* 2007, 27, 4391.
- Y.-W. Li, L. Dong, C.-X. Huang, Y.-C. Guo, X.-Z. Yang, Y.-J. Xu and H.-S.
 Qian, *RSC Adv.*, 2016, 6, 54241–54248.
- L. Tan, D. Li, L. Zhang, L. Xu, Y. Zhao, L. Zhu and R. Qiao, *J. Phy. Chem. C*, 2020, **124**, 18081–18090.
- S. Ullah, C. Hazra, E. P. Ferreira-Neto, T. C. Silva, U. P. Rodrigues-Filho and S.
 J. L. Ribeiro, *CrystEngComm*, 2017, 19, 3465–3475.
- J. Li, X. Yang, C. Ma, Y. Lei, Z. Cheng and Z. Rui, *Appl. Catal. B. Environ.*, 2021, 291, 120053.
- W. Lei, Y. Mi, R. Feng, P. Liu, S. Hu, J. Yu, X. Liu, J. A. Rodriguez, J.–O.
 Wang, L. Zheng, K. Tang, S. Zhu, G. Liu and M. Liu, *Nano Energy*, 2018, 50, 552–561.
- M. Wang, J. Q. Wang, C. Xi, C. Q. Cheng, C. Q. Zou, R. Zhang, Y. M. Xie, Z. L.
 Guo, C. C. Tang, C. K. Dong, Y. J. Chen and X. W. Du, *Angew. Chem. Int. Ed.*, 2020, 59, 11510–11515.
- K. Gottschling, G. Savasci, H. Vignolo-Gonzalez, S. Schmidt, P. Mauker, T. Banerjee, P. Rovo, C. Ochsenfeld and B. V. Lotsch, *J. Am. Chem. Soc.*, 2020, 142, 12146–12156.
- 14 F. Xue, Y. Si, M. Wang, M. Liu and L. Guo, *Nano Energy*, 2019, **62**, 823–831.

- 15 H. Wu, R. Irani, K. Zhang, L. Jing, H. Dai, H. Y. Chung, F. F. Abdi and Y. H. Ng, ACS Energy Lett., 2021, 6, 3400–3407.
- 16 X. Jin, R. Wang, L. Zhang, R. Si, M. Shen, M. Wang, J. Tian and J. Shi, *Angew. Chem. Int. Ed.*, 2020, **59**, 6827–6831.
- Y.-J. Gao, X.-B. Li, X.-Z. Wang, N.-J. Zhao, Y. Zhao, Y. Wang, Z.-K. Xin,
 J.-P. Zhang, T. Zhang, C.-H. Tung and L.-Z. Wu, *Matter*, 2020, 3, 571–585.
- 18 K. Sun, M. Liu, J. Pei, D. Li, C. Ding, K. Wu and H. L. Jiang, Angew. Chem. Int. Ed., 2020, 59, 22749–22755.
- 19 X. Chen, S. Xiao, H. Wang, W. Wang, Y. Cai, G. Li, M. Qiao, J. Zhu, H. Li, D. Zhang and Y. Lu, *Angew. Chem. Int. Ed.*, 2020, **59**, 17182–17186.
- 20 Z. Ai, K. Zhang, D. Shi, B. Chang, Y. Shao, L. Zhang, Y. Wu and X. Hao, *Nano Energy*, 2020, **69**. 104408.
- Y. Huang, Y. Jian, L. Li, D. Li, Z. Fang, W. Dong, Y. Lu, B. Luo, R. Chen, Y.
 Yang, M. Chen and W. Shi, *Angew. Chem. Int. Ed.*, 2021, 60, 5245–5249.
- 22 C. Cai, Y. Teng, J. H. Wu, J. Y. Li, H. Y. Chen, J. H. Chen and D. B. Kuang, *Adv. Funct. Mater.*, 2020, **30**. 2001478.
- X. Li, B. Kang, F. Dong, Z. Zhang, X. Luo, L. Han, J. Huang, Z. Feng, Z.
 Chen, J. Xu, B. Peng and Z. L. Wang, *Nano Energy*, 2021, 81, 105671.
- Z. Lian, M. Sakamoto, Y. Kobayashi, N. Tamai, J. Ma, T. Sakurai, S. Seki, T. Nakagawa, M. W. Lai, M. Haruta, H. Kurata and T. Teranishi, *ACS Nano*, 2019, 13, 8356–8363.
- J. Pan, P. Wang, P. Wang, Q. Yu, J. Wang, C. Song, Y. Zheng and C. Li, *Chem. Eng. J.*, 2021, 405. 126622.
- X. Song, G. Wei, J. Sun, C. Peng, J. Yin, X. Zhang, Y. Jiang and H. Fei, *Nat. Catal.*, 2020, 3, 1027–1033.
- K. Ogawa, H. Suzuki, C. Zhong, R. Sakamoto, O. Tomita, A. Saeki, H. Kageyama and R. Abe, *J. Am. Chem. Soc.*, 2021, 143, 8446–8453.
- Y. Liu, Y. H. Li, X. Li, Q. Zhang, H. Yu, X. Peng and F. Peng, ACS Nano, 2020,
 14, 14181–14189.

- Y. Zhu, C. Lv, Z. Yin, J. Ren, X. Yang, C. L. Dong, H. Liu, R. Cai, Y. C. Huang,
 W. Theis, S. Shen and D. Yang, *Angew. Chem. Int. Ed.*, 2020, **59**, 868–873.
- 30 P. Jiménez–Calvo, V. Caps, M. N. Ghazzal, C. Colbeau–Justin and V. Keller, Nano Energy, 2020, 75. 104888.
- P. Zhou, H. Chen, Y. Chao, Q. Zhang, W. Zhang, F. Lv, L. Gu, Q. Zhao, N. Wang, J. Wang and S. Guo, *Nat. Commun.*, 2021, 12, 4412.
- 32 G. Liu, L. Ma, L.–C. Yin, G. Wan, H. Zhu, C. Zhen, Y. Yang, Y. Liang, J. Tan and H.–M. Cheng, *Joule*, 2018, 2, 1095–1107.
- D. Zhao, Y. Wang, C.–L. Dong, Y.–C. Huang, J. Chen, F. Xue, S. Shen and L.
 Guo, *Nat. Energy*, 2021, 6, 388–397.
- 34 M. Xu, D. Li, K. Sun, L. Jiao, C. Xie, C. Ding and H. L. Jiang, Angew. Chem. Int. Ed., 2021, 60, 16372–16376.
- T. Kawawaki, T. Nakagawa, M. Sakamoto and T. Teranishi, *J. Am. Chem. Soc.*,
 2019, 141, 8402–8406.
- 36 G. Chen, P. Wang, Y. Wu, Q. Zhang, Q. Wu, Z. Wang, Z. Zheng, Y. Liu, Y. Dai and B. Huang, *Adv. Mater.*, 2020, **32**, 2001344.